HEAL DSpace

Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Papadopoulos, V en
dc.contributor.author Lagaros, ND en
dc.date.accessioned 2014-03-01T01:12:19Z
dc.date.available 2014-03-01T01:12:19Z
dc.date.issued 1996 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12059
dc.subject Back Propagation Algorithm en
dc.subject Complex Structure en
dc.subject Critical Loads en
dc.subject Difference Set en
dc.subject Importance Sampling en
dc.subject Monte Carlo Simulation en
dc.subject Probability of Failure en
dc.subject Random Variable en
dc.subject Reliability Analysis en
dc.subject Structural Reliability en
dc.subject Neural Network en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Backpropagation en
dc.subject.other Computer aided analysis en
dc.subject.other Elasticity en
dc.subject.other Failure (mechanical) en
dc.subject.other Learning algorithms en
dc.subject.other Monte Carlo methods en
dc.subject.other Neural networks en
dc.subject.other Plasticity en
dc.subject.other Random processes en
dc.subject.other Reliability en
dc.subject.other Sampling en
dc.subject.other Critical load factor en
dc.subject.other Elastic plastic structures en
dc.subject.other Failure probability en
dc.subject.other Importance sampling en
dc.subject.other Plastic collapse en
dc.subject.other Structural analysis en
dc.title Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation en
heal.type journalArticle en
heal.identifier.primary 10.1016/0045-7825(96)01011-0 en
heal.identifier.secondary http://dx.doi.org/10.1016/0045-7825(96)01011-0 en
heal.language English en
heal.publicationDate 1996 en
heal.abstract This paper examines the application of Neural Networks (NN) to the reliability analysis of complex structural systems in connection with Monte Carlo Simulation (MCS). The failure of the system is associated with the plastic collapse. The use of NN was motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required for MCS. A Back Propagation algorithm is implemented for training the NN utilising available information generated from selected elasto-plastic analyses. The trained NN is then used to compute the critical load factor due to different sets of basic random variables leading to close prediction of the probability of failure. The use of MCS with Importance Sampling further improves the prediction of the probability of failure with Neural Networks. en
heal.publisher ELSEVIER SCIENCE SA LAUSANNE en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/0045-7825(96)01011-0 en
dc.identifier.isi ISI:A1996VH09200008 en
dc.identifier.volume 136 en
dc.identifier.issue 1-2 en
dc.identifier.spage 145 en
dc.identifier.epage 163 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής