dc.contributor.author |
Papadrakakis, M |
en |
dc.contributor.author |
Papadopoulos, V |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.date.accessioned |
2014-03-01T01:12:19Z |
|
dc.date.available |
2014-03-01T01:12:19Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12059 |
|
dc.subject |
Back Propagation Algorithm |
en |
dc.subject |
Complex Structure |
en |
dc.subject |
Critical Loads |
en |
dc.subject |
Difference Set |
en |
dc.subject |
Importance Sampling |
en |
dc.subject |
Monte Carlo Simulation |
en |
dc.subject |
Probability of Failure |
en |
dc.subject |
Random Variable |
en |
dc.subject |
Reliability Analysis |
en |
dc.subject |
Structural Reliability |
en |
dc.subject |
Neural Network |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Computer aided analysis |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Failure (mechanical) |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Sampling |
en |
dc.subject.other |
Critical load factor |
en |
dc.subject.other |
Elastic plastic structures |
en |
dc.subject.other |
Failure probability |
en |
dc.subject.other |
Importance sampling |
en |
dc.subject.other |
Plastic collapse |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7825(96)01011-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7825(96)01011-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
This paper examines the application of Neural Networks (NN) to the reliability analysis of complex structural systems in connection with Monte Carlo Simulation (MCS). The failure of the system is associated with the plastic collapse. The use of NN was motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required for MCS. A Back Propagation algorithm is implemented for training the NN utilising available information generated from selected elasto-plastic analyses. The trained NN is then used to compute the critical load factor due to different sets of basic random variables leading to close prediction of the probability of failure. The use of MCS with Importance Sampling further improves the prediction of the probability of failure with Neural Networks. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/0045-7825(96)01011-0 |
en |
dc.identifier.isi |
ISI:A1996VH09200008 |
en |
dc.identifier.volume |
136 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
145 |
en |
dc.identifier.epage |
163 |
en |