dc.contributor.author |
Kadja, M |
en |
dc.contributor.author |
Anagnostopoulos, JS |
en |
dc.contributor.author |
Bergeles, GC |
en |
dc.date.accessioned |
2014-03-01T01:12:21Z |
|
dc.date.available |
2014-03-01T01:12:21Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0735-1933 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12071 |
|
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Air pollution |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Boundary layers |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Pressure |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
Wind |
en |
dc.subject.other |
Domain decomposition method |
en |
dc.subject.other |
Grid |
en |
dc.subject.other |
Pollutant dispersion |
en |
dc.subject.other |
Porosity technique |
en |
dc.subject.other |
Terrain |
en |
dc.subject.other |
Wind flow |
en |
dc.subject.other |
Flow of fluids |
en |
dc.subject.other |
dispersion |
en |
dc.subject.other |
pollutant transport |
en |
dc.subject.other |
topography |
en |
dc.subject.other |
wind |
en |
dc.subject.other |
atmospheric pollutant |
en |
dc.subject.other |
boundary layer |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
pollutant transport |
en |
dc.subject.other |
wind flow |
en |
dc.title |
Study of wind flow and pollutant dispersion by newly developed precision-improving methods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0735-1933(96)00088-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0735-1933(96)00088-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The paper presents a three-dimensional transient numerical model for atmospheric wind flow and industry and/or traffic pollutant dispersion over terrains having a complex topography. The model is based on a finite-volume integration of the equations governing mass, momentum, heat and pollutant transport within the earth's atmospheric boundary layer, using a collocated grid arrangement. The instability provoked by such a formulation was avoided by using a special pressure-velocity coupling. Local refinement of the grid was achieved via a domain decomposition method. The technique of ''porosity'' used to approximate curved three-dimensional boundaries is incorporated in the procedure thus avoiding the less accurate and more common approximation by a broken surface with segments parallel to the coordinate lines. The method was validated by simulating the flow over the Attica peninsula for which measurements of wind speed and pollutant emissions are available. Copyright (C) 1996 Elsevier Science Ltd |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Communications in Heat and Mass Transfer |
en |
dc.identifier.doi |
10.1016/S0735-1933(96)00088-7 |
en |
dc.identifier.isi |
ISI:A1996VU13500002 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1065 |
en |
dc.identifier.epage |
1076 |
en |