HEAL DSpace

Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamondlike carbon

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantzaris, NV en
dc.contributor.author Gogolides, E en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Rhallabi, A en
dc.contributor.author Turban, G en
dc.date.accessioned 2014-03-01T01:12:21Z
dc.date.available 2014-03-01T01:12:21Z
dc.date.issued 1996 en
dc.identifier.issn 0021-8979 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12073
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0000591011&partnerID=40&md5=ba6e38675b350ceb082a1f60e912444e en
dc.subject.classification Physics, Applied en
dc.subject.other RADIOFREQUENCY GLOW-DISCHARGES en
dc.subject.other ION ENERGY en
dc.subject.other FILMS en
dc.title Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamondlike carbon en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1996 en
heal.abstract A surface model was developed for diamondlike-carbon film deposition, and was connected in a self-consistent way with a one-dimensional plasma chemistry and physics model for a CH4 radio-frequency (rf) discharge. The surface model considers the adsorption of multiple species (CH3, CH2, and H), and solves for the surface coverage of each species. Comparison is also done with a one-adsorbed-species model. Deposition is assumed to take place via direct ion incorporation, and ion-induced stitching of adsorbed neutrals; film removal takes place via etching and sputtering. The effects of ion flux/energy and surface temperature are examined in detail: At high ion energies direct ion incorporation dominates, in spite of competition with sputtering; at intermediate energies stitching prevails, while for lower ion energies etching can become largest. Mass balances are written at the surface - gas interface, permitting the determination of the effective sticking coefficients of the reacting neutrals. The sticking coefficients calculated from the surface model are fed back into the gas-phase chemistry model to recalculate the neutral densities. The process is repeated until a self-consistent solution is obtained. It is shown that the effective sticking coefficient of a neutral changes drastically from a low value for the plasma-off (or low ion energy) state, to a high value for the plasma-on and high ion energy state, resulting in higher consumption at the surface. The results show that it is imperative for meaningful results to solve surface and gas-phase chemistry models in a self-consistent way, a fact demonstrated by successful comparison with experimental data for the deposition rate and the gas-phase densities. © 1996 American Institute of Physics. en
heal.publisher AMER INST PHYSICS en
heal.journalName Journal of Applied Physics en
dc.identifier.isi ISI:A1996UC07300058 en
dc.identifier.volume 79 en
dc.identifier.issue 7 en
dc.identifier.spage 3718 en
dc.identifier.epage 3729 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής