dc.contributor.author |
Pantelelis, NG |
en |
dc.contributor.author |
Kanarachos, AE |
en |
dc.date.accessioned |
2014-03-01T01:12:23Z |
|
dc.date.available |
2014-03-01T01:12:23Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12094 |
|
dc.subject |
Adaptive grids |
en |
dc.subject |
Composite grids |
en |
dc.subject |
Euler |
en |
dc.subject |
Implicit scheme |
en |
dc.subject |
Multigrid |
en |
dc.subject |
Parallelization |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Euler Flow |
en |
dc.subject.other |
Grids |
en |
dc.subject.other |
Multigrids |
en |
dc.subject.other |
adaptive grids |
en |
dc.subject.other |
composite grids |
en |
dc.subject.other |
equations of motion |
en |
dc.title |
The parallel block adaptive multigrid method for the implicit solution of the Euler equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-0363(19960315)22:5<411::AID-FLD364>3.3.CO;2-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-0363(19960315)22:5<411::AID-FLD364>3.3.CO;2-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
A method capable of solving very fast and robust complex non-linear systems of equations is presented. The block adaptive multigrid (BAM) method combines mesh adaptive techniques with multigrid and domain decomposition methods. The overall method is based on the FAS multigrid, but instead of using global grids, locally enriched subgrids are also employed in regions where excessive solution errors are encountered. The final mesh is a composite grid with uniform rectangular subgrids of various mesh densities. The regions where finer grid resolution is necessary are detected using an estimation of the solution error by comparing solutions between grid levels. Furthermore, an alternative domain decomposition strategy has been developed to take advantage of parallel computing machines. The proposed method has been applied to an implicit upwind Euler code (EuFlex) for the solution of complex transonic flows around aerofoils. The efficiency and robustness of the BAM method are demonstrated for two popular inviscid test cases. Up to 19-fold acceleration with respect to the single-grid solution has been achieved, but a further twofold speed-up is possible on four-processor parallel computers. © 1996 by John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/(SICI)1097-0363(19960315)22:5<411::AID-FLD364>3.3.CO;2-1 |
en |
dc.identifier.isi |
ISI:A1996TY25800005 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
411 |
en |
dc.identifier.epage |
428 |
en |