dc.contributor.author |
Rogdakis, ED |
en |
dc.date.accessioned |
2014-03-01T01:12:27Z |
|
dc.date.available |
2014-03-01T01:12:27Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
0363-907X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12102 |
|
dc.subject |
Ammonia-water mixture |
en |
dc.subject |
Kalina cycle |
en |
dc.subject |
Optimum operation of the Kalina cycle |
en |
dc.subject |
Parametric study |
en |
dc.subject |
Thermodynamic charts |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.other |
Ammonia |
en |
dc.subject.other |
Enthalpy |
en |
dc.subject.other |
Entropy |
en |
dc.subject.other |
Mixtures |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Water |
en |
dc.subject.other |
Kalina cycle |
en |
dc.subject.other |
Thermodynamic charts |
en |
dc.subject.other |
Electric power generation |
en |
dc.title |
Thermodynamic analysis, parametric study and optimum operation of the kalina cycle |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1099-114X(199604)20:4<359::AID-ER165>3.0.CO;2-S |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1099-114X(199604)20:4<359::AID-ER165>3.0.CO;2-S |
en |
heal.language |
English |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The work described here has as major objectives the complete thermodynamic analysis and the parametric study of the Kalina Power Unit. The device layout optimization is based on the presentation of the unit on the T-h and h/T-S thermodynamic charts. The operation of the power unit is simulated by the use of equations describing the thermodynamic behaviour of the NH3/H2O mixture. The important parameters of the unit, i.e. high, medium and low pressures/rich, weak, working solution and boiler vapour mass fraction are discussed and related. Correlations are developed which describe the optimum operation of the Kalina cycle. The maximum thermal efficiency, the heat required to drive the unit and the work produced may be directly calculated from analytical functions in terms of the ambient temperature and the low pressure of the units. The maximum theoretical efficiency ranges from 42.7% to 46.6%. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal of Energy Research |
en |
dc.identifier.doi |
10.1002/(SICI)1099-114X(199604)20:4<359::AID-ER165>3.0.CO;2-S |
en |
dc.identifier.isi |
ISI:A1996UF70200007 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
359 |
en |
dc.identifier.epage |
370 |
en |