dc.contributor.author |
Politis, ES |
en |
dc.contributor.author |
Giannakoglou, KC |
en |
dc.date.accessioned |
2014-03-01T01:12:34Z |
|
dc.date.available |
2014-03-01T01:12:34Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12141 |
|
dc.subject |
Approximate factorization |
en |
dc.subject |
Compressible flows |
en |
dc.subject |
Density biasing |
en |
dc.subject |
Pressure correction |
en |
dc.subject |
Turbulent flows |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Compressible flow |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Navier Stokes equations |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Approximate factorization |
en |
dc.subject.other |
Density biasing |
en |
dc.subject.other |
Pressure correction equation |
en |
dc.subject.other |
Turbomachinery flows |
en |
dc.subject.other |
Transonic flow |
en |
dc.subject.other |
algorithms |
en |
dc.subject.other |
Navier-Stokes equations |
en |
dc.subject.other |
turbomachinery |
en |
dc.title |
A pressure-based algorithm for high-speed turbomachinery flows |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The steady state Navier-Stokes equations are solved in transonic flows using an elliptic formulation. A segregated solution algorithm is established in which the pressure correction equation is utilized to enforce the divergence-free mass flux constraint. The momentum equations are solved in terms of the primitive variables, while the pressure correction field is used to update both the convecting mass flux components and the pressure itself. The velocity components are deduced from the corrected mass fluxes on the basis of an upwind-biased density, which is a mechanism capable of overcoming the ellipticity of the system of equations, in the transonic flow regime. An incomplete LU decomposition is used for the solution of the transport-type equations and a globally minimized residual method resolves the pressure correction equation. Turbulence is resolved through the k-epsilon model. Dealing with turbomachinery applications, results are presented in two-dimensional compressor and turbine cascades under design and off-design conditions. (C) 1997 by John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A |
en |
dc.identifier.isi |
ISI:A1997XH17100004 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
63 |
en |
dc.identifier.epage |
80 |
en |