HEAL DSpace

A pressure-based algorithm for high-speed turbomachinery flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Politis, ES en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:12:34Z
dc.date.available 2014-03-01T01:12:34Z
dc.date.issued 1997 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12141
dc.subject Approximate factorization en
dc.subject Compressible flows en
dc.subject Density biasing en
dc.subject Pressure correction en
dc.subject Turbulent flows en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Algorithms en
dc.subject.other Compressible flow en
dc.subject.other Mathematical models en
dc.subject.other Navier Stokes equations en
dc.subject.other Turbulence en
dc.subject.other Approximate factorization en
dc.subject.other Density biasing en
dc.subject.other Pressure correction equation en
dc.subject.other Turbomachinery flows en
dc.subject.other Transonic flow en
dc.subject.other algorithms en
dc.subject.other Navier-Stokes equations en
dc.subject.other turbomachinery en
dc.title A pressure-based algorithm for high-speed turbomachinery flows en
heal.type journalArticle en
heal.identifier.primary 10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A en
heal.identifier.secondary http://dx.doi.org/10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A en
heal.language English en
heal.publicationDate 1997 en
heal.abstract The steady state Navier-Stokes equations are solved in transonic flows using an elliptic formulation. A segregated solution algorithm is established in which the pressure correction equation is utilized to enforce the divergence-free mass flux constraint. The momentum equations are solved in terms of the primitive variables, while the pressure correction field is used to update both the convecting mass flux components and the pressure itself. The velocity components are deduced from the corrected mass fluxes on the basis of an upwind-biased density, which is a mechanism capable of overcoming the ellipticity of the system of equations, in the transonic flow regime. An incomplete LU decomposition is used for the solution of the transport-type equations and a globally minimized residual method resolves the pressure correction equation. Turbulence is resolved through the k-epsilon model. Dealing with turbomachinery applications, results are presented in two-dimensional compressor and turbine cascades under design and off-design conditions. (C) 1997 by John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/(SICI)1097-0363(19970715)25:1<63::AID-FLD539>3.0.CO;2-A en
dc.identifier.isi ISI:A1997XH17100004 en
dc.identifier.volume 25 en
dc.identifier.issue 1 en
dc.identifier.spage 63 en
dc.identifier.epage 80 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής