dc.contributor.author |
Dewachtere, NV |
en |
dc.contributor.author |
Froment, GF |
en |
dc.contributor.author |
Vasalos, I |
en |
dc.contributor.author |
Markatos, N |
en |
dc.contributor.author |
Skandalis, N |
en |
dc.date.accessioned |
2014-03-01T01:12:36Z |
|
dc.date.available |
2014-03-01T01:12:36Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
13594311 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12156 |
|
dc.subject |
Computational fluid dynamics |
en |
dc.subject |
Energy efficiency |
en |
dc.subject |
FCC |
en |
dc.subject |
Riser simulation |
en |
dc.subject |
Single-event kinetic modeling |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Energy efficiency |
en |
dc.subject.other |
Feedstocks |
en |
dc.subject.other |
Fluid catalytic cracking |
en |
dc.subject.other |
Gas chromatography |
en |
dc.subject.other |
Gas oils |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Liquid chromatography |
en |
dc.subject.other |
Mass spectrometry |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Vaporization |
en |
dc.subject.other |
Catalytic cracking reactors |
en |
dc.subject.other |
Single event kinetic modeling |
en |
dc.subject.other |
Chemical reactors |
en |
dc.title |
Advanced modeling of riser-type catalytic cracking reactors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S1359-4311(96)00074-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S1359-4311(96)00074-9 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Various aspects of the advanced modeling of riser-type catalytic cracking reactors are discussed in this paper. A new kinetic modeling approach for the catalytic cracking process is introduced, based on carbenium ion chemistry. Single-event kinetic modeling leads to kinetic parameters which are truly invariant of the gas oil feedstock composition. Since the new kinetic modeling approach requires a detailed analysis of the gas oil feedstock, the characterization of heavy petroleum fractions by means of liquid chromatography and GC-MS analysis is briefly discussed. A three-dimensional (3-D) mathematical model for the simulation of a riser reactor is introduced, using computational fluid dynamics techniques. The model includes a detailed hydrodynamic model. Special attention is devoted to the modeling of the inlet zone of the riser, where the gas oil feedstock is vaporized. The 3-D riser model is validated against experimental data from an industrial riser reactor. © European Communities 1997. Published by Elsevier Science Ltd. |
en |
heal.journalName |
Applied Thermal Engineering |
en |
dc.identifier.doi |
10.1016/S1359-4311(96)00074-9 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
8-10 |
en |
dc.identifier.spage |
837 |
en |
dc.identifier.epage |
844 |
en |