HEAL DSpace

All-frequency normal-mode solution of the three-dimensional acoustic scattering from a vertical cylinder in a plane-horizontal waveguide

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T01:12:36Z
dc.date.available 2014-03-01T01:12:36Z
dc.date.issued 1997 en
dc.identifier.issn 0001-4966 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12160
dc.subject.classification Acoustics en
dc.subject.other Acoustic wave scattering en
dc.subject.other Acoustic wave transmission en
dc.subject.other Asymptotic stability en
dc.subject.other Boundary conditions en
dc.subject.other Boundary value problems en
dc.subject.other Convergence of numerical methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Frequencies en
dc.subject.other Functions en
dc.subject.other Integral equations en
dc.subject.other Three dimensional en
dc.subject.other Azimuthal terms en
dc.subject.other Bessel functions en
dc.subject.other Dirichlet boundary condition en
dc.subject.other Hankel functions en
dc.subject.other Neumann boundary condition en
dc.subject.other Nondimensional wave number en
dc.subject.other Normal mode series en
dc.subject.other Ocean acoustic waveguides en
dc.subject.other Scattered field en
dc.subject.other Underwater acoustics en
dc.subject.other acoustics en
dc.subject.other amplitude modulation en
dc.subject.other analytic method en
dc.subject.other article en
dc.subject.other geometry en
dc.subject.other mathematical computing en
dc.subject.other priority journal en
dc.subject.other problem solving en
dc.subject.other sound transmission en
dc.subject.other waveform en
dc.title All-frequency normal-mode solution of the three-dimensional acoustic scattering from a vertical cylinder in a plane-horizontal waveguide en
heal.type journalArticle en
heal.identifier.primary 10.1121/1.418295 en
heal.identifier.secondary http://dx.doi.org/10.1121/1.418295 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract The three-dimensional acoustic scattering from a vertical, impenetrable cylinder in a waveguide is studied. The analytical solution of the problem, for a Dirichlet or a Neumann boundary condition on the scatterer, has been derived recently by Athanassoulis and Prospathopoulos [J. Acoust. Soc. Am. 100, 206-218 (1996)] in the form of a double-infinite normal-mode series, representing the total acoustic field. In order to extend the applicability of this solution to higher frequencies, the total field is decomposed into the incident and the scattered parts. A series expansion for the scattered field is obtained, and the critical parameter controlling its azimuthal convergence is shown to be the nondimensional wave number ka based on the radius a of the cylinder. The general term of the series starts to decay exponentially immediately after the azimuthal index has exceeded the critical value ka, a fact justifying the introduction of the concept of azimuthal- evanescent modes. By exploiting the above decomposition, the direct numerical summation of the normal-mode series becomes feasible up to ka ≃ 1000. For calculations at even higher frequencies (ka→∞), asymptotic expressions are derived by using appropriate integral representations of Bessel and Hankel functions, in conjunction with the method of stationary phase. The asymptotic analysis shows that the scattered field is obtained as a superposition of 2- D point sources lying on the boundary of the vertical cylinder, with appropriate amplitudes and phases. Excellent agreement between asymptotic and direct summation numerical results has been demonstrated, at moderate frequencies, where both representations are expected to be valid.The 3-D acoustic scattering from a vertical impenetrable cylinder in a plane-horizontal waveguide has been studied in the context of normal-mode theory. The analytical solution of the problem, for a Dirichlet or a Neumann boundary condition on the surface of the scatterer, has been derived in the form of a double- infinite series of normal modes representing the total acoustic field. In order to extend the applicability of this solution to higher frequencies, the total field has been decomposed into the incident and the scattered parts, and a series expansion of the scattered field has been derived. en
heal.publisher Am Inst Phys, Woodbury, NY, United States en
heal.journalName Journal of the Acoustical Society of America en
dc.identifier.doi 10.1121/1.418295 en
dc.identifier.isi ISI:A1997XE28800019 en
dc.identifier.volume 101 en
dc.identifier.issue 6 en
dc.identifier.spage 3371 en
dc.identifier.epage 3384 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής