HEAL DSpace

An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlachos, DS en
dc.contributor.author Fragoulis, DK en
dc.contributor.author Avaritsiotis, JN en
dc.date.accessioned 2014-03-01T01:12:36Z
dc.date.available 2014-03-01T01:12:36Z
dc.date.issued 1997 en
dc.identifier.issn 0925-4005 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12162
dc.subject Gas sensors en
dc.subject Neural networks en
dc.subject.classification Chemistry, Analytical en
dc.subject.classification Electrochemistry en
dc.subject.classification Instruments & Instrumentation en
dc.subject.other Degradation en
dc.subject.other Electric network topology en
dc.subject.other Neural networks en
dc.subject.other Oxides en
dc.subject.other Pattern recognition en
dc.subject.other Neural network topology en
dc.subject.other Thin film tin oxide gas sensors en
dc.subject.other Electrochemical sensors en
dc.title An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0925-4005(97)00309-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0925-4005(97)00309-2 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract A hybrid neural network for gas sensing application is presented, which is based on adaptive resonance theory. The network may use as an input one or more gas sensors. The basic feature of the proposed topology is its ability to learn a new pattern or form a new pattern category at any point of its operation. At the same time it retains knowledge of previously learned patterns or pattern categories. This adaptation ability helps the network to solve many of the problems encountered with tin oxide gas sensors, like instabilities and degradation. The functionality of the network is presented in the two cases of one and four input providing gas sensors. The experimental results show that the effect of sensor degradation maybe compensated by the proposed network topology. (C) 1997 Elsevier Science S.A. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Sensors and Actuators, B: Chemical en
dc.identifier.doi 10.1016/S0925-4005(97)00309-2 en
dc.identifier.isi ISI:000072641900007 en
dc.identifier.volume 45 en
dc.identifier.issue 3 en
dc.identifier.spage 223 en
dc.identifier.epage 228 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής