dc.contributor.author |
Papanicolaou, VG |
en |
dc.contributor.author |
Kravvaritis, D |
en |
dc.date.accessioned |
2014-03-01T01:12:37Z |
|
dc.date.available |
2014-03-01T01:12:37Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0266-5611 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12173 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Eigenvalue Problem |
en |
dc.subject |
Inverse Spectral Problem |
en |
dc.subject |
Physical Characteristic |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
An inverse spectral problem for the Euler-Bernoulli equation for the vibrating beam |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0266-5611/13/4/013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0266-5611/13/4/013 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The equation of the vibrating beam, together with some appropriate boundary conditions, can be viewed as an eigenvalue problem for the operator L given by Lu = rho(-1)(au '')'' where the functions a and rho are strictly positive, and correspond to physical characteristics of the beam. In this work we examine how a given spectral datum determines whether a(x)rho(x) = 1. If this equation holds, L becomes a 'perfect square'. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Inverse Problems |
en |
dc.identifier.doi |
10.1088/0266-5611/13/4/013 |
en |
dc.identifier.isi |
ISI:A1997XQ94300013 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1083 |
en |
dc.identifier.epage |
1092 |
en |