HEAL DSpace

Analysis of dielectrically loaded radiators using entire-domain Galerkin technique

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kaklamani, DI en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T01:12:37Z
dc.date.available 2014-03-01T01:12:37Z
dc.date.issued 1997 en
dc.identifier.issn 1045-9243 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12177
dc.subject Dielectric loaded antennas en
dc.subject Frequency domain analysis en
dc.subject Green's functions en
dc.subject Integral equations en
dc.subject Moment methods en
dc.subject Parallel machines en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Dielectric devices en
dc.subject.other Dielectric materials en
dc.subject.other Electric currents en
dc.subject.other Electric fields en
dc.subject.other Estimation en
dc.subject.other Frequency domain analysis en
dc.subject.other Green's function en
dc.subject.other Integral equations en
dc.subject.other Parallel processing systems en
dc.subject.other Dielectric loaded antennas en
dc.subject.other Galerkin technique en
dc.subject.other Dipole antennas en
dc.title Analysis of dielectrically loaded radiators using entire-domain Galerkin technique en
heal.type journalArticle en
heal.identifier.primary 10.1109/74.637105 en
heal.identifier.secondary http://dx.doi.org/10.1109/74.637105 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract The response of various types of dielectrically loaded radiators to a time-harmonic excitation is analyzed, by employing an integral-equation formulation in conjunction with an entire-domain Galerkin technique. Coupled integral equations are derived in the frequency domain. These are written in terms of the conductivity currents or/and the electric fields developed on the conducting surfaces or/and inside the dielectric materials, respectively. They are solved via the Method-of-Moments technique. In particular, an entire-domain Galerkin technique is employed, and proves very efficient, when rather specific geometries are considered and appropriate ""intelligent"" basis-function sets are chosen, accelerating the convergence of the method. To prove this claim, three representative antenna structures, of significant practical use, corresponding to the three types of geometries (cylindrical, spherical, and planar), are solved in the resonance region. Parallelization of the developed sequential code is employed, in order to extend the use of Galerkin technique to electrically large structures. The validity of the proposed method is checked, and numerical results are presented for several cases. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Antennas and Propagation Magazine en
dc.identifier.doi 10.1109/74.637105 en
dc.identifier.isi ISI:A1997YH41200006 en
dc.identifier.volume 39 en
dc.identifier.issue 5 en
dc.identifier.spage 30 en
dc.identifier.epage 53 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής