HEAL DSpace

Comparison of two methods for the computation of singular solutions in elliptic problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, G en
dc.contributor.author Boudouvis, A en
dc.contributor.author Poullikkas, A en
dc.date.accessioned 2014-03-01T01:12:41Z
dc.date.available 2014-03-01T01:12:41Z
dc.date.issued 1997 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12206
dc.subject Convergence en
dc.subject Elliptic problems en
dc.subject Singularities en
dc.subject.classification Mathematics, Applied en
dc.subject.other Approximation theory en
dc.subject.other Boundary conditions en
dc.subject.other Convergence of numerical methods en
dc.subject.other Finite element method en
dc.subject.other Integral equations en
dc.subject.other Lagrange multipliers en
dc.subject.other Polynomials en
dc.subject.other Integrated singular basis function method (ISBFM) en
dc.subject.other Boundary value problems en
dc.title Comparison of two methods for the computation of singular solutions in elliptic problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-0427(96)00173-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-0427(96)00173-2 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract We compare two numerical methods for the solution of elliptic problems with boundary singularities. The first is the integrated singular basis function method (ISBFM), a finite-element method in which the solution is approximated by standard polynomial basis functions supplemented by the leading terms of the local (singular) solution expansion. A double application of Green's theorem reduces all Galerkin integrals containing singular terms to boundary integrals with nonsingular integrands. The originally essential boundary conditions are weakly enforced by means of Lagrange multipliers. The second method is a singular function boundary integral method which can be viewed as a modification of the ISBFM. The solution is approximated only by the leading terms of the local solution expansion. The discretized equations are boundary integrals and the dimension of the problem is reduced by one. The two methods are applied to the cracked-beam problem giving very accurate estimates of the leading singular coefficients. Comparisons are made and their limitations are discussed. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/S0377-0427(96)00173-2 en
dc.identifier.isi ISI:A1997WV12800009 en
dc.identifier.volume 79 en
dc.identifier.issue 2 en
dc.identifier.spage 277 en
dc.identifier.epage 287 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής