HEAL DSpace

Computer assisted characterization of liver tissue using image texture analysis techniques on B-scan images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyriacou, E en
dc.contributor.author Pavlopoulos, S en
dc.contributor.author Koutsouris, D en
dc.contributor.author Zoumpoulis, P en
dc.contributor.author Theotokas, I en
dc.date.accessioned 2014-03-01T01:12:43Z
dc.date.available 2014-03-01T01:12:43Z
dc.date.issued 1997 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12210
dc.subject Fractal Dimension en
dc.subject Image Texture Analysis en
dc.subject K Nearest Neighbor en
dc.subject Texture Analysis en
dc.subject Tissue Characterization en
dc.subject Ultrasound en
dc.subject Region of Interest en
dc.subject.other Algorithms en
dc.subject.other Computer aided analysis en
dc.subject.other Image analysis en
dc.subject.other Tissue en
dc.subject.other Ultrasonic imaging en
dc.subject.other Fractal dimension texture analysis en
dc.subject.other Gray level difference statistics en
dc.subject.other Gray level run length statistics en
dc.subject.other Spatial gray level dependence matrices en
dc.subject.other Medical imaging en
dc.title Computer assisted characterization of liver tissue using image texture analysis techniques on B-scan images en
heal.type journalArticle en
heal.identifier.primary 10.1109/IEMBS.1997.757766 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.1997.757766 en
heal.publicationDate 1997 en
heal.abstract In this study, the classification of B-scan ultrasonic liver images using image texture analysis techniques is investigated. The texture analysis algorithms used were the Gray Level Difference Statistics (GLDS), the Gray Level Run Length Statistics (RUNL), the Spatial Gray Level Dependence Matrices (SGLDM) and the Fractal Dimension Texture Analysis (FDTA). All four techniques were applied on four sets of ultrasonic liver images: normal, fatty, cirrhosis and hepatoma. A total of 120 cases were investigated (30 from each class), with all abnormal cases being histologically proven. In each image, a 32×32 pixel rectangular region-of-interest was selected by an expert physician. Results were classified using the K-nearest neighbor (K-NN) classifier. The FDTA and SGLDM algorithms were able to classify the four sets with an overall accuracy of 78,3% and 77,5% respectively while the RUNL algorithm achieved 74,2% and the GLDS algorithm 70,8% overall accuracy. Combination of RUNL, SGLDM and FDTA improved the overall accuracy to 80%. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.1997.757766 en
dc.identifier.volume 2 en
dc.identifier.spage 806 en
dc.identifier.epage 809 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής