dc.contributor.author |
Kokkorakis, GC |
en |
dc.contributor.author |
Roumeliotis, JA |
en |
dc.date.accessioned |
2014-03-01T01:12:51Z |
|
dc.date.available |
2014-03-01T01:12:51Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0920-5071 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12262 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0030643780&partnerID=40&md5=0c06de0a3a81593db99c742856a89535 |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Conductive materials |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Closed form expressions |
en |
dc.subject.other |
Electromagnetic eigenfrequencies |
en |
dc.subject.other |
Expansion coefficients |
en |
dc.subject.other |
Shape perturbation method |
en |
dc.subject.other |
Spheroidal cavity |
en |
dc.subject.other |
Electromagnetic field theory |
en |
dc.title |
Electromagnetic eigenfrequencies in a spheroidal cavity |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The electromagnetic eigenfrequencies f(nsm) in a perfectly conducting spheroidal cavity are determined analytically, by a shape perturbation method. The analytical determination is possible in the case of small values of the quantity v = 1 - a(2)/b(2), (\v\ <much less than 1), where 2a and 2b are the lengths of the rotation axis and the other axis of the spheroidal cavity, respectively. In this case, exact, closed-form expressions are obtained for the expansion coefficients ((1)(gnsm)) and ((2)(gnsm)) in the resulting relation f(nsm)(v) = f(ns)(0)[1 + vg(nsm)((1)) + v(gnsm)(2)((2)) + O(v(3))]. There is no need for using any spheroidal eigenvectors in our solution. The electromagnetic field is expressed in a series of spherical eigenvectors, while the equation of the spheroidal boundary is given in terms of the spherical coordinates. Numerical results are given for the eigenfrequencies of the lower-order magnetic and electric modes. |
en |
heal.publisher |
VSP BV |
en |
heal.journalName |
Journal of Electromagnetic Waves and Applications |
en |
dc.identifier.isi |
ISI:A1997WP95300001 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
279 |
en |
dc.identifier.epage |
292 |
en |