HEAL DSpace

Exact analysis of the finite precision error generation and propagation in the FAEST and the fast transversal algorithms: A general methodology for developing robust RLS schemes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaodysseus, C en
dc.contributor.author Koukoutsis, E en
dc.contributor.author Stavrakakis, G en
dc.contributor.author Halkias, CC en
dc.date.accessioned 2014-03-01T01:12:52Z
dc.date.available 2014-03-01T01:12:52Z
dc.date.issued 1997 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12273
dc.subject White Noise en
dc.subject kalman filter en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other FILTERS en
dc.subject.other NORMALIZATION en
dc.title Exact analysis of the finite precision error generation and propagation in the FAEST and the fast transversal algorithms: A general methodology for developing robust RLS schemes en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0378-4754(97)00004-9 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0378-4754(97)00004-9 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract In this paper, an analysis for the actual and deeper cause of the finite precision error generation and accumulation in the FAEST-5p and the fast transversal filtering (FTF) algorithm is undertaken, on the basis of a new methodology and practice. In particular, it is proved that, in case where the input data in these algorithms is a white noise or a periodic sequence, then, out of all the formulas that constitute these two schemes, only four specific formulas generate an amount of finite precision error that consistently makes the algorithms fail after a certain number of iterations. If these formulas are calculated free of finite precision error, then all the results of the two algorithms are also computed error-free. In addition, it is shown that there is a very limited number of specific formulas that transmit the finite precision error generated by these four formulas. Moreover, a number of very general propositions is presented that allow for the calculation of the exact number of erroneous digits with which all the quantities of the FAEST and FTF schemes are computed, including the filter coefficients. Finally, a general methodology is introduced, based on the previous results, that allows for the development of new RLS algorithms that, intrinsically, suffer less of finite precision numerical problems and that therefore are, in practice, suitable for high quality fast Kalman filtering implementations. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.doi 10.1016/S0378-4754(97)00004-9 en
dc.identifier.isi ISI:A1997XV39700003 en
dc.identifier.volume 44 en
dc.identifier.issue 1 en
dc.identifier.spage 29 en
dc.identifier.epage 41 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής