dc.contributor.author |
Cardinali, T |
en |
dc.contributor.author |
Fiacca, A |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:12:56Z |
|
dc.date.available |
2014-03-01T01:12:56Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0026-9255 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12282 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0007234805&partnerID=40&md5=3793a41cd7d845af1e60777cadec779d |
en |
dc.subject |
Compact embedding |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
Extremal fixed points |
en |
dc.subject |
Lower solution |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Penalty function |
en |
dc.subject |
Regular cone |
en |
dc.subject |
Sobolev space |
en |
dc.subject |
Truncation map |
en |
dc.subject |
Upper solution |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DIFFERENTIAL-EQUATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Extremal solutions for nonlinear parabolic problems with discontinuities |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
This paper examines nonlinear parabolic initial-boundary Value problems with a discontinuous forcing term, which is locally of bounded variation. Assuming that there exist an upper solution phi and a lower solution psi, we prove the existence of a maximal and of a minimal solution within the older interval [psi,phi] subset of or equal to L-p(T x Z). Our approach is based on a Jordan-type decomposition for the discontinuous forcing term and on a fixed point theorem for nondecreasing maps in ordered Banach spaces. |
en |
heal.publisher |
SPRINGER-VERLAG WIEN |
en |
heal.journalName |
Monatshefte fur Mathematik |
en |
dc.identifier.isi |
ISI:A1997XR02000002 |
en |
dc.identifier.volume |
124 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
119 |
en |
dc.identifier.epage |
131 |
en |