dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:12:57Z |
|
dc.date.available |
2014-03-01T01:12:57Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12291 |
|
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
MECHANICS |
en |
dc.subject.other |
TIME |
en |
dc.title |
Geometric aspects of the co-rotational derivative of a continuous motion |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/zamm.19970770211 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/zamm.19970770211 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this work we use a frame-independent version of the co-rotational derivative of a motion, and study the geometry defined by this derivative on classical space-time. This is done in the general framework of derivatives, called Spins, which define a rigid parallel translation of space-like vectors. We express the Spin itself in terms of this translation, and show that for a non-uniform Spin this translation depends on the path. Since the co-rotational derivative is a Spin, its geometry is studied in this context. After showing that the relative vorticity of two motions is the difference of their co-rotational derivatives, we prove that the translation defined by the co-rotational derivative of a motion is path-independent, if and only if the motion is homogeneous. |
en |
heal.publisher |
AKADEMIE VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/zamm.19970770211 |
en |
dc.identifier.isi |
ISI:A1997WP81400006 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
137 |
en |
dc.identifier.epage |
142 |
en |