HEAL DSpace

Geometric aspects of the co-rotational derivative of a continuous motion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kadianakis, N en
dc.date.accessioned 2014-03-01T01:12:57Z
dc.date.available 2014-03-01T01:12:57Z
dc.date.issued 1997 en
dc.identifier.issn 0044-2267 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12291
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mechanics en
dc.subject.other MECHANICS en
dc.subject.other TIME en
dc.title Geometric aspects of the co-rotational derivative of a continuous motion en
heal.type journalArticle en
heal.identifier.primary 10.1002/zamm.19970770211 en
heal.identifier.secondary http://dx.doi.org/10.1002/zamm.19970770211 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract In this work we use a frame-independent version of the co-rotational derivative of a motion, and study the geometry defined by this derivative on classical space-time. This is done in the general framework of derivatives, called Spins, which define a rigid parallel translation of space-like vectors. We express the Spin itself in terms of this translation, and show that for a non-uniform Spin this translation depends on the path. Since the co-rotational derivative is a Spin, its geometry is studied in this context. After showing that the relative vorticity of two motions is the difference of their co-rotational derivatives, we prove that the translation defined by the co-rotational derivative of a motion is path-independent, if and only if the motion is homogeneous. en
heal.publisher AKADEMIE VERLAG GMBH en
heal.journalName ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik en
dc.identifier.doi 10.1002/zamm.19970770211 en
dc.identifier.isi ISI:A1997WP81400006 en
dc.identifier.volume 77 en
dc.identifier.issue 2 en
dc.identifier.spage 137 en
dc.identifier.epage 142 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής