dc.contributor.author |
Arvanitis, KG |
en |
dc.contributor.author |
Kalogeropoulos, G |
en |
dc.date.accessioned |
2014-03-01T01:12:58Z |
|
dc.date.available |
2014-03-01T01:12:58Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0278-081X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12299 |
|
dc.subject |
Crossed Product |
en |
dc.subject |
Discrete Time |
en |
dc.subject |
Performance Index |
en |
dc.subject |
State Feedback |
en |
dc.subject |
Linear Quadratic |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Discrete time control systems |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Linear control systems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Cross product terms |
en |
dc.subject.other |
Discrete time linear quadratic optimal regulators |
en |
dc.subject.other |
Optimal control systems |
en |
dc.title |
Guaranteed stability margins for discrete-time LQ optimal regulators for the performance index with cross-product terms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01371572 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01371572 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper, the stability robustness of deterministic state feedback discrete-time linear quadratic (LQ) optimal regulators for the performance index with cross-product terms is analyzed. Guaranteed stability margins for such a type of LQ optimal regulator are suggested for the first time. These stability margins are obtained on the basis of a modified return difference equality and are expressed directly in terms of the elementary cost and system matrices. Sufficient conditions to guarantee the required stability margins are presented. Finally, the connection between the suggested stability margins and the selection of weighting state, input, and cross-product matrices is investigated, and useful guidelines for choosing proper weighting matrices are presented. |
en |
heal.publisher |
BIRKHAUSER BOSTON INC |
en |
heal.journalName |
Circuits, Systems, and Signal Processing |
en |
dc.identifier.doi |
10.1007/BF01371572 |
en |
dc.identifier.isi |
ISI:A1997YG27600004 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
663 |
en |
dc.identifier.epage |
701 |
en |