HEAL DSpace

Ionic competition effects in a continuous uranium biosorptive recovery process

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsezos, M en
dc.contributor.author Georgousis, Z en
dc.contributor.author Remoudaki, E en
dc.date.accessioned 2014-03-01T01:13:05Z
dc.date.available 2014-03-01T01:13:05Z
dc.date.issued 1997 en
dc.identifier.issn 0268-2575 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12329
dc.subject Aluminium en
dc.subject Biomass en
dc.subject Biosorption en
dc.subject Immobilized en
dc.subject Ionic competition en
dc.subject Silicon en
dc.subject Uranium en
dc.subject.classification Biotechnology & Applied Microbiology en
dc.subject.classification Chemistry, Multidisciplinary en
dc.subject.classification Engineering, Chemical en
dc.subject.other Aluminum en
dc.subject.other Biomass en
dc.subject.other Enzyme immobilization en
dc.subject.other Recovery en
dc.subject.other Scanning electron microscopy en
dc.subject.other Silicon en
dc.subject.other Sorption en
dc.subject.other Spectrum analysis en
dc.subject.other Transmission electron microscopy en
dc.subject.other Uranium en
dc.subject.other Adsorption elution cycles en
dc.subject.other Biosorptive recovery process en
dc.subject.other Ionic competition effects en
dc.subject.other Biotechnology en
dc.subject.other aluminum en
dc.subject.other uranium en
dc.subject.other uranyl nitrate en
dc.subject.other biosorption en
dc.subject.other fungi en
dc.subject.other radionuclide uptake en
dc.subject.other sorption en
dc.subject.other uranium en
dc.subject.other adsorption en
dc.subject.other article en
dc.subject.other biomass en
dc.subject.other biotransformation en
dc.subject.other desorption en
dc.subject.other immobilized cell en
dc.subject.other rhizopus en
dc.subject.other waste water management en
dc.subject.other Rhizopus arrhizus en
dc.title Ionic competition effects in a continuous uranium biosorptive recovery process en
heal.type journalArticle en
heal.identifier.primary 10.1002/(SICI)1097-4660(199710)70:2<198::AID-JCTB751>3.0.CO;2-4 en
heal.identifier.secondary http://dx.doi.org/10.1002/(SICI)1097-4660(199710)70:2<198::AID-JCTB751>3.0.CO;2-4 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract Immobilized Rhizopus arrhizus biomass was studied in a continuous sorption and desorption mode in order to identify factors that affect the long term uranium biosorptive uptake capacity performance of the immobilized biomass. Laboratory-scale continuous operation pilot plant experiments were performed using synthetic uranyl nitrate and industrial uranium mine leachate solutions. Analysis of the liquid solutions indicated that the immobilized Rhizopus arrhizus biomass successfully recovered all of the uranium from the dilute (less than 500 mg U dm-3) solutions. All uranium can subsequently be eluted, yielding highly concentrated uranium eluates. The immobilized Rhizopus arrhizus biomass maintained its uranium biosorptive uptake capacity over 12 successive sorption-elution cycles when synthetic uranyl nitrate solutions were used. However, when used with mine leachate solutions, an 18% reduction in the uranium biosorptive uptake capacity occurred within the first four adsorption-elution cycles. Spectral analysis indicated that, during continuous use and reuse, the immobilized biomass retained its structural integrity. EDAX, scanning and transmission electron microscopic techniques employed on the microbial biomass suggested that the presence of aluminium interferes with the uranium biosorption process. Spectral analysis also indicated that the presence of silicon enhances the negative effect of the presence of aluminium on the uranium biosorptive uptake capacity of the immobilized Rhizopus arrhizus biomass particles.Immobilized Rhizopus arrhizus biomass was studied in a continuous sorption and desorption mode in order to identify factors that affect the long term uranium biosorptive uptake capacity performance of the immobilized biomass. Laboratory-scale continuous operation pilot plant experiments were performed using synthetic uranyl nitrate and industrial uranium mine leachate solutions. Analysis of the liquid solutions indicated that the immobilized Rhizopus arrhizus biomass successfully recovered all of the uranium from the dilute (less than 500 mg U dm-3) solutions. All uranium can subsequently be eluted, yielding highly concentrated uranium eluates. The immobilized Rhizopus arrhizus biomass maintained its uranium biosorptive uptake capacity over 12 successive sorption-elution cycles when synthetic uranyl nitrate solutions were used. However, when used with mine leachate solutions, an 18% reduction in the uranium biosorptive uptake capacity occurred within the first four adsorption-elution cycles. Spectral analysis indicated that, during continuous use and reuse, the immobilized biomass retained its structural integrity. EDAX, scanning and transmission electron microscopic techniques employed on the microbial biomass suggested that the presence of aluminium interferes with the uranium biosorption process. Spectral analysis also indicated that the presence of silicon enhances the negative effect of the presence of aluminium on the uranium biosorptive uptake capacity of the immobilized Rhizopus arrhizus biomass particles. en
heal.publisher John Wiley & Sons Ltd, Chichester, United Kingdom en
heal.journalName Journal of Chemical Technology and Biotechnology en
dc.identifier.doi 10.1002/(SICI)1097-4660(199710)70:2<198::AID-JCTB751>3.0.CO;2-4 en
dc.identifier.isi ISI:A1997YB26600010 en
dc.identifier.volume 70 en
dc.identifier.issue 2 en
dc.identifier.spage 198 en
dc.identifier.epage 206 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής