dc.contributor.author |
Koukou, MK |
en |
dc.contributor.author |
Chaloulou, G |
en |
dc.contributor.author |
Papayannakos, N |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:13:10Z |
|
dc.date.available |
2014-03-01T01:13:10Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0017-9310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12339 |
|
dc.subject |
Finite Volume |
en |
dc.subject |
Heat Exchanger |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Mathematical Modelling |
en |
dc.subject |
Membrane Reactor |
en |
dc.subject |
Packed Bed |
en |
dc.subject |
Temperature Field |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Chemical reactions |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dehydrogenation |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Permselective membranes |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Endothermic dehydrogenation |
en |
dc.subject.other |
Membrane reactor conversion |
en |
dc.subject.other |
Non isothermal membrane reactors |
en |
dc.subject.other |
Permselective porous glass membrane |
en |
dc.subject.other |
Packed beds |
en |
dc.title |
Mathematical modelling of the performance of non-isothermal membrane reactors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0017-9310(96)00287-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0017-9310(96)00287-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The development of a mathematical model is presented, which simulates the performance of a non-isothermal packed-bed membrane reactor. The model takes into account the various heat exchanges that take place inside the reactor. A set of partial-differential conservation equations, coupled with the appropriate boundary and internal conditions describing the physical problem considered is solved, using finite-volume techniques. In this study, the developed mathematical model is applied to investigate the endothermic dehydrogenation of cyclohexane in a packed-bed membrane reactor, where a permselective porous glass membrane is embodied. It is shown that the assumption of isothermal conditions, or even the omission of certain thermal phenomena that take place inside the reactor, lead to a significant overestimation of the predicted temperature field and of the membrane reactor conversion. (C) 1997 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Heat and Mass Transfer |
en |
dc.identifier.doi |
10.1016/S0017-9310(96)00287-6 |
en |
dc.identifier.isi |
ISI:A1997WM47000014 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
2407 |
en |
dc.identifier.epage |
2417 |
en |