HEAL DSpace

Non-conservative systems with symmetrizable stiffness matrices exhibiting limit cycles

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kounadis, AN en
dc.contributor.author Simitses, GJ en
dc.date.accessioned 2014-03-01T01:13:13Z
dc.date.available 2014-03-01T01:13:13Z
dc.date.issued 1997 en
dc.identifier.issn 00207462 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12361
dc.subject Dissipation of energy en
dc.subject Limit cycles en
dc.subject Non-conservative autonomous systems en
dc.subject Non-linear dynamics en
dc.subject Non-potential asymmetric systems en
dc.subject Symmetrizable stiffness matrices en
dc.subject.other Approximation theory en
dc.subject.other Buckling en
dc.subject.other Dynamic loads en
dc.subject.other Dynamic response en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Energy dissipation en
dc.subject.other Numerical analysis en
dc.subject.other Stiffness matrix en
dc.subject.other System stability en
dc.subject.other Limit cycles en
dc.subject.other Nonconservative autonomous systems en
dc.subject.other Nonpotential asymmetric systems en
dc.subject.other Symmetrizable stiffness matrix en
dc.subject.other Dynamics en
dc.title Non-conservative systems with symmetrizable stiffness matrices exhibiting limit cycles en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0020-7462(96)00070-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0020-7462(96)00070-4 en
heal.publicationDate 1997 en
heal.abstract Non-conservative dissipative systems under partial follower loading, with stiffness matrices that are symmetrizable, are reexamined with the aid of non-linear analysis. In this work, the conditions under which the above autonomous systems may experience a limit cycle response, stable (periodic attractor) or unstable (dynamic instability via flutter) in a certain region of existence of adjacent equilibria (region of divergence instability) are properly established. This region where a limit cycle response may occur is defined by an interval of values of the non-conservativeness loading parameter ηwith lower bound η = η0 (boundary between existence and non-existence of adjacent equilibria) and upper bound η = 0.50 (being invariant with respect to all other parameters). In this region although the set of buckling eigenvectors is complete (associated with distinct eigenvalues) there is one postbuckling equilibrium path passing through two consecutive branching points. Hence, only non-conservative systems with η > 0.50 (having all postbuckling equilibrium paths independent of each other) behave dynamically like symmetric (conservative) systems. These findings are verified with the aid of various numerical examples. © 1997 Elsevier Science Ltd. All rights reserved. en
heal.journalName International Journal of Non-Linear Mechanics en
dc.identifier.doi 10.1016/S0020-7462(96)00070-4 en
dc.identifier.volume 32 en
dc.identifier.issue 3 en
dc.identifier.spage 515 en
dc.identifier.epage 529 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής