dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:13:14Z |
|
dc.date.available |
2014-03-01T01:13:14Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0315-3681 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12376 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031283690&partnerID=40&md5=bf46cab0acb9e1ecad3a47bbd5c056ae |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
SUPPLEMENTARY DIFFERENCE SETS |
en |
dc.subject.other |
N=2 MOD 4 |
en |
dc.subject.other |
HADAMARD-MATRICES |
en |
dc.subject.other |
CONSTRUCTION |
en |
dc.subject.other |
EXCESS |
en |
dc.title |
On almost D-optimal first order saturated designs and their efficiency |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The problem of constructing first order saturated designs that are optimal in some sense has received a great deal of attention in the literature. In experimental situations where n two-level factors are involved and n observations are taken, then the D-optimal first order saturated design is an n x n +/-1 matrix with the maximum determinant. In this paper we construct almost D-optimal first order saturated designs with n = 29 and n = 22 observations and we compute their D-efficiency. |
en |
heal.publisher |
UTIL MATH PUBL INC |
en |
heal.journalName |
Utilitas Mathematica |
en |
dc.identifier.isi |
ISI:000072024800009 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.spage |
113 |
en |
dc.identifier.epage |
121 |
en |