dc.contributor.author |
Rogdakis, ED |
en |
dc.contributor.author |
Antonopoulos, KA |
en |
dc.date.accessioned |
2014-03-01T01:13:16Z |
|
dc.date.available |
2014-03-01T01:13:16Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0363-907X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12408 |
|
dc.subject |
Air-conditioning |
en |
dc.subject |
Compression/absorption refrigeration |
en |
dc.subject |
N-hexadecane |
en |
dc.subject |
Propane |
en |
dc.subject |
Resorption refrigeration |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.other |
Air conditioning |
en |
dc.subject.other |
Enthalpy |
en |
dc.subject.other |
Evaporators |
en |
dc.subject.other |
Propane |
en |
dc.subject.other |
Refrigerants |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Absorbents |
en |
dc.subject.other |
Hexadecane |
en |
dc.subject.other |
Resorption refrigeration |
en |
dc.subject.other |
Refrigeration |
en |
dc.title |
Propane/n-hexadecane resorption cycle for air-conditioning applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1099-114X(19970610)21:7<615::AID-ER288>3.0.CO;2-D |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1099-114X(19970610)21:7<615::AID-ER288>3.0.CO;2-D |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
A compression/absoption (or resorption) refrigeration cycle is considered for air-conditioning applications, working with C3H8 as refrigerant and C16H34 as absorbent. A method is developed for the calculation and representation of the thermodynamic cycle on the enthalpy-temperature plane. A parametric study is conducted and the optimum operation of the refrigeration unit is defined. Correlations are developed for the thermodynamic properties of the working mixture and the characteristic quantities of the cycle. It is found that, for air-conditioning applications with highest temperature in the evaporator from 5 to 20 degrees C, the theoretical cooling capacity and coefficient of performance vary in the ranges from 260-270 kJ kg(-1) C3H8 and for 2.1 to 3.3, respectively. (C) 1997 by John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal of Energy Research |
en |
dc.identifier.doi |
10.1002/(SICI)1099-114X(19970610)21:7<615::AID-ER288>3.0.CO;2-D |
en |
dc.identifier.isi |
ISI:A1997XG57800004 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
615 |
en |
dc.identifier.epage |
630 |
en |