dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Shahzad, N |
en |
dc.date.accessioned |
2014-03-01T01:13:17Z |
|
dc.date.available |
2014-03-01T01:13:17Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0095-4616 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12409 |
|
dc.subject |
Compact embedding |
en |
dc.subject |
Connected set |
en |
dc.subject |
Evolution inclusion |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
Invariant set |
en |
dc.subject |
Parabolic problem |
en |
dc.subject |
Path-connected set |
en |
dc.subject |
Periodic solution |
en |
dc.subject |
Rδ-set |
en |
dc.subject |
Tangent cone |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Invariance |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Gelfand triple of spaces |
en |
dc.subject.other |
Nonlinear evolution inclusions |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Properties of the solution set of nonlinear evolution inclusions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02683335 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02683335 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper we examine nonlinear, nonautonomous evolution inclusions defined on a Gelfand triple of spaces. First we show that the problem with a convex-valued, h*-usc in x orientor field F(t, x) has a solution set which is an Rδ-set in C (T, H). Then for the problem with a nonconvex-valued F (t, x) which is h-Lipschitz in x, we show that the solution set is path-connected in C (T, H). Subsequently we prove a strong invariance result and a continuity result for the solution multifunction. Combining these two results we establish the existence of periodic solutions. Some examples of parabolic partial differential equations with multivalued terms are also included. © 1997 Springer-Verlag New York Inc. |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
Applied Mathematics and Optimization |
en |
dc.identifier.doi |
10.1007/BF02683335 |
en |
dc.identifier.isi |
ISI:A1997WX23300001 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
20 |
en |