HEAL DSpace

Recognizing 21/2D shape features using a neural network and heuristics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nezis, K en
dc.contributor.author Vosniakos, G en
dc.date.accessioned 2014-03-01T01:13:18Z
dc.date.available 2014-03-01T01:13:18Z
dc.date.issued 1997 en
dc.identifier.issn 0010-4485 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12413
dc.subject Boundary models en
dc.subject Connectedness en
dc.subject Feature recognition en
dc.subject Heuristic algorithms en
dc.subject Neural nets en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other FEATURE-RECOGNITION en
dc.subject.other SYSTEM en
dc.subject.other CAD en
dc.title Recognizing 21/2D shape features using a neural network and heuristics en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0010-4485(97)00003-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0010-4485(97)00003-1 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract This work presents a Feature Recognition system developed using a previously trained Artificial Neural Network. The part description is taken from a B-rep solid modeller's data base. This description refers only to topological information about the faces in the part in the form of an Attributed Adjacency Graph. A set of heuristics is used for breaking down this compound feature graph into subgraphs, that correspond to simple features. Special representation patterns are then constructed for each of these subgraphs. These patterns are presented to a Neural Network which classifies them into feature classes: pockets, slots, passages, protrusions, steps, blind slots, corner pockets, and holes. The scope of instances/variations of these features that can be recognised is very wide. A commercially available neural network modelling tool was used for training. The user interface to the neural network recogniser has been written in Pascal. The program can handle parts with up to 200 planar or curved faces. The performance of the recogniser in terms of speed is far better than that of any other rule-based system due to the Neural Network approach employed. The basic limitation is that of the heuristics used to break down compound features into simple ones which are fed to the ANN, but this is still a step ahead compared to other approaches. (C) 1997 Elsevier Science Ltd. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName CAD Computer Aided Design en
dc.identifier.doi 10.1016/S0010-4485(97)00003-1 en
dc.identifier.isi ISI:A1997XA33500005 en
dc.identifier.volume 29 en
dc.identifier.issue 7 en
dc.identifier.spage 523 en
dc.identifier.epage 539 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής