dc.contributor.author |
Vardoulakis, I |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.date.accessioned |
2014-03-01T01:13:20Z |
|
dc.date.available |
2014-03-01T01:13:20Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0374-3535 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12434 |
|
dc.subject |
Dispersion |
en |
dc.subject |
Gradient elasticity |
en |
dc.subject |
Integral transforms |
en |
dc.subject |
Microstructure |
en |
dc.subject |
SH motions |
en |
dc.subject |
Surface waves |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Continuum mechanics |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Interfacial energy |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Surfaces |
en |
dc.subject.other |
Gradient elasticity |
en |
dc.subject.other |
Homogeneous gradient elastic half space |
en |
dc.subject.other |
Integral transforms |
en |
dc.subject.other |
Surface waves |
en |
dc.title |
SH Surface Waves in a Homogeneous Gradient-Elastic Half-Space with Surface Energy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1007433510623 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1007433510623 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The existence of SH surface waves in a half-space of homogeneous material (i.e. anti-plane shear wave motions which decay exponentially with the distance from the free surface) is shown to be possible within the framework of the generalized linear continuum theory of gradient elasticity with surface energy. As is well-known such waves cannot be predicted by the classical theory of linear elasticity for a homogeneous half-space, although there is experimental evidence supporting their existence. Indeed, this is a drawback of the classical theory which is only circumvented by modelling the half-space as a layered structure (Love waves) or as having non-homogeneous material properties. On the contrary, the present study reveals that SH surface waves may exist in a homogeneous half-space if the problem is analyzed by a continuum theory with appropriate microstructure. This theory, which was recently introduced by Vardoulakis and co-workers, assumes a strain-energy density expression containing, besides the classical terms, volume strain-gradient and surface-energy gradient terms. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Journal of Elasticity |
en |
dc.identifier.doi |
10.1023/A:1007433510623 |
en |
dc.identifier.isi |
ISI:A1997YG80900004 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
147 |
en |
dc.identifier.epage |
165 |
en |