HEAL DSpace

SH Surface Waves in a Homogeneous Gradient-Elastic Half-Space with Surface Energy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vardoulakis, I en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:13:20Z
dc.date.available 2014-03-01T01:13:20Z
dc.date.issued 1997 en
dc.identifier.issn 0374-3535 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12434
dc.subject Dispersion en
dc.subject Gradient elasticity en
dc.subject Integral transforms en
dc.subject Microstructure en
dc.subject SH motions en
dc.subject Surface waves en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other Continuum mechanics en
dc.subject.other Elasticity en
dc.subject.other Interfacial energy en
dc.subject.other Mathematical models en
dc.subject.other Surfaces en
dc.subject.other Gradient elasticity en
dc.subject.other Homogeneous gradient elastic half space en
dc.subject.other Integral transforms en
dc.subject.other Surface waves en
dc.title SH Surface Waves in a Homogeneous Gradient-Elastic Half-Space with Surface Energy en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1007433510623 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1007433510623 en
heal.language English en
heal.publicationDate 1997 en
heal.abstract The existence of SH surface waves in a half-space of homogeneous material (i.e. anti-plane shear wave motions which decay exponentially with the distance from the free surface) is shown to be possible within the framework of the generalized linear continuum theory of gradient elasticity with surface energy. As is well-known such waves cannot be predicted by the classical theory of linear elasticity for a homogeneous half-space, although there is experimental evidence supporting their existence. Indeed, this is a drawback of the classical theory which is only circumvented by modelling the half-space as a layered structure (Love waves) or as having non-homogeneous material properties. On the contrary, the present study reveals that SH surface waves may exist in a homogeneous half-space if the problem is analyzed by a continuum theory with appropriate microstructure. This theory, which was recently introduced by Vardoulakis and co-workers, assumes a strain-energy density expression containing, besides the classical terms, volume strain-gradient and surface-energy gradient terms. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Journal of Elasticity en
dc.identifier.doi 10.1023/A:1007433510623 en
dc.identifier.isi ISI:A1997YG80900004 en
dc.identifier.volume 47 en
dc.identifier.issue 2 en
dc.identifier.spage 147 en
dc.identifier.epage 165 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής