dc.contributor.author |
Simandirakis, G |
en |
dc.contributor.author |
Bouras, B |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:13:21Z |
|
dc.date.available |
2014-03-01T01:13:21Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
10032169 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12437 |
|
dc.subject |
Passive control |
en |
dc.subject |
Shock/boundary layer interaction |
en |
dc.subject |
Transonic airfoils |
en |
dc.title |
Shock-boundary layer interaction control, predictions using a viscous-inviscid interaction procedure and a navier-stokes solver |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11630-997-0023-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11630-997-0023-4 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
The present contribution describes two prediction methods for flows around transonic airfoils, including shock control devices. The whole work was done in the frame of the European Shock Control Investigation Project EUROSHOCK-AER-2, and the global objective was the improvement of the flight performance, in transonic speed, in terms of cruise speed, fuel consumption and exhaust emissions for both laminar and turbulent wings. More specifically the ""passive"" control of shock/boundary layer interaction, whereby part of the solid surface of the airfoil is replaced by a porous surface over a shallow cavity, has been shown to be a means of improving the aerodynamic characteristics of supercritical airfoils. |
en |
heal.journalName |
Journal of Thermal Science |
en |
dc.identifier.doi |
10.1007/s11630-997-0023-4 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
97 |
en |
dc.identifier.epage |
110 |
en |