dc.contributor.author |
Theologos, KN |
en |
dc.contributor.author |
Nikou, ID |
en |
dc.contributor.author |
Lygeros, AI |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.date.accessioned |
2014-03-01T01:13:21Z |
|
dc.date.available |
2014-03-01T01:13:21Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0001-1541 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12439 |
|
dc.subject |
Fluid Catalytic Cracking |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Activation energy |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fluid catalytic cracking |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Reaction kinetics |
en |
dc.subject.other |
Structural design |
en |
dc.subject.other |
Temperature distribution |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Two phase flow |
en |
dc.subject.other |
Vaporization |
en |
dc.subject.other |
Feed injector geometry |
en |
dc.subject.other |
Fluid catalytic cracking riser type reactors |
en |
dc.subject.other |
Gradual feedstock vaporization |
en |
dc.subject.other |
Chemical reactors |
en |
dc.title |
Simulation and Design of Fluid Catalytic-Cracking Riser-Type Reactors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/aic.690430221 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/aic.690430221 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Two-phase flow, heat transfer, and reaction in fluid catalytic-cracking riser-type reactors are studied using a 3-D mathematical model. This study was carried out based on the model of Theologos and Markatos, which incorporates a detailed ten-lump reaction kinetics scheme and accounts for gradual feedstock vaporization inside the reactor. Predictions obtained using the new model are compared against industrial reactor operating data. A design study was also carried out to illustrate that the model developed is capable of predicting feed-injector geometry effects on overall reactor performance. It shows that by increasing the number of feed-injection operating nozzles at the bottom of the reactor, selectivity of primary products is improved. |
en |
heal.publisher |
AMER INST CHEMICAL ENGINEERS |
en |
heal.journalName |
AIChE Journal |
en |
dc.identifier.doi |
10.1002/aic.690430221 |
en |
dc.identifier.isi |
ISI:A1997WG12900020 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
486 |
en |
dc.identifier.epage |
494 |
en |