dc.contributor.author |
Brock, LM |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.contributor.author |
Tsamasphyros, G |
en |
dc.date.accessioned |
2014-03-01T01:13:26Z |
|
dc.date.available |
2014-03-01T01:13:26Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0149-5739 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12476 |
|
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Crack propagation |
en |
dc.subject.other |
Friction |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Speed |
en |
dc.subject.other |
Surfaces |
en |
dc.subject.other |
Thermomechanical treatment |
en |
dc.subject.other |
Tribology |
en |
dc.subject.other |
Contact mechanics |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Thermoelasticity |
en |
dc.title |
The coupled thermoelasticity problem of the transient motion of a line heat/mechanical source over a half-space |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/01495739708956128 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01495739708956128 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
A procedure is developed for obtaining fundamental thermoelastic two-dimensional solutions for thermal and/or mechanical loadings moving unsteadily over the surface of a half-space. These solutions are within the bounds of the transient coupled thermoelastodynamic theory of M. A. Biot. The concentrated line loadings (sources) are suddenly applied on the surface of the half-space and then move in a fixed direction with nonuniform speed. The problem is of basic interest in contact mechanics and tribology, and it is especially related to the well-known heat checking problem (thermomechanical cracking in an unflawed half-space material from high-speed asperity excitations). Here, an exact and general formulation is considered and explicit results are given for some special cases. These results are obtained by generating asymptotic expressions from one- and two-sided Laplace transforms and then performing the inversions in an exact manner. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Journal of Thermal Stresses |
en |
dc.identifier.doi |
10.1080/01495739708956128 |
en |
dc.identifier.isi |
ISI:A1997YE26300005 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
773 |
en |
dc.identifier.epage |
795 |
en |