dc.contributor.author |
Mamalis, AG |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.contributor.author |
Demosthenous, GA |
en |
dc.contributor.author |
Ioannidis, MB |
en |
dc.date.accessioned |
2014-03-01T01:13:28Z |
|
dc.date.available |
2014-03-01T01:13:28Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
1359-8368 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12488 |
|
dc.subject |
Composite Material |
en |
dc.subject |
Energy Dissipation |
en |
dc.subject |
Engineering Design |
en |
dc.subject |
Fracture Mechanic |
en |
dc.subject |
Point of View |
en |
dc.subject |
Theoretical Analysis |
en |
dc.subject |
Axial Length |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Materials Science, Composites |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Crashworthiness |
en |
dc.subject.other |
Energy dissipation |
en |
dc.subject.other |
Failure (mechanical) |
en |
dc.subject.other |
Fracture |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Materials testing |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Axial crumbling process |
en |
dc.subject.other |
Energy absorbing capability |
en |
dc.subject.other |
Thin walled fibreglass composite square tube |
en |
dc.subject.other |
Composite materials |
en |
dc.title |
The static and dynamic axial crumbling of thin-walled fibreglass composite square tubes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S1359-8368(96)00066-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S1359-8368(96)00066-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In the present paper we report on the behaviour and crashworthiness characteristics of square composite tubes subjected to static and dynamic axial compression exerted by a hydraulic press and a drop-hammer, respectively. The effect of specimen geometry, i.e. of thickness and axial length, and of the loading rate on the energy absorbing capability are studied in detail. Attention is directed towards the mechanics of the axial crumbling process from macroscopic and microscopic point of view for facilitating engineering design calculations of the amount of energy dissipated and for a somewhat more complete aspect on the actual fracture mechanism during the failure of the composite material tested. A theoretical analysis of the collapse mechanism of the components tested under axial compression is proposed, leading to a good approximation of the energy absorbed during crushing. (C) 1997 Elsevier Science Limited. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Composites Part B: Engineering |
en |
dc.identifier.doi |
10.1016/S1359-8368(96)00066-2 |
en |
dc.identifier.isi |
ISI:A1997XM80600010 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
439 |
en |
dc.identifier.epage |
451 |
en |