dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:13:29Z |
|
dc.date.available |
2014-03-01T01:13:29Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.issn |
0035-7596 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12502 |
|
dc.subject |
Mackey topology |
en |
dc.subject |
Narrow topology |
en |
dc.subject |
Polish space |
en |
dc.subject |
Radon-Nikodym derivative |
en |
dc.subject |
Support function |
en |
dc.subject |
Transition measure |
en |
dc.subject |
Transition multimeasure |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
THEOREMS |
en |
dc.title |
Transition vector measures and multimeasures and parametric set-valued integrals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1216/rmjm/1181071899 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1216/rmjm/1181071899 |
en |
heal.language |
English |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper we examine transition vector measures and multimeasures. First we prove a Radon-Nikodym theorem for transition vector measures and then we use it to establish the existence of a set-valued Radon-Nikodym derivative for transition multimeasures. Subsequently, we examine parametric set-valued integrals and obtain two results characterizing their measurable selectors (integral versions of Filippov's implicit function lemma). We conclude with a useful observation concerning transition measures. |
en |
heal.publisher |
ROCKY MT MATH CONSORTIUM |
en |
heal.journalName |
Rocky Mountain Journal of Mathematics |
en |
dc.identifier.doi |
10.1216/rmjm/1181071899 |
en |
dc.identifier.isi |
ISI:000071627100013 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
877 |
en |
dc.identifier.epage |
888 |
en |