dc.contributor.author |
Provatidis, Ch |
en |
dc.date.accessioned |
2014-03-01T01:13:30Z |
|
dc.date.available |
2014-03-01T01:13:30Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0264-4401 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12523 |
|
dc.subject |
axisymmetric problems |
en |
dc.subject |
boundary element method |
en |
dc.subject |
Fast Fourier transform |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Fast Fourier transforms |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Error correction |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Axisymmetric potential problems |
en |
dc.subject.other |
Non axisymmetric boundary conditions |
en |
dc.subject.other |
Axisymmetric methods |
en |
dc.subject.other |
Dynamic engineering |
en |
dc.subject.other |
Non-symmetric boundary conditions |
en |
dc.subject.other |
Trapezoidal rule |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
A boundary element method for axisymmetric potential problems with non-axisymmetric boundary conditions using fast fourier transform |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1108/02644409810219802 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1108/02644409810219802 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
This paper presents a methodology, based on the fast Fourier transform (FFT), that improves prior established techniques to solve axisymmetric potential problems with nonaxisymmetric boundary conditions using the boundary element method (BEM). The proposed methodology is highly effective, especially in cases where a large number of harmonics is required. Furthermore, it is optimised at several levels, reaching the maximum possible efficiency. Special concern is given on its implementation on quadratic elements that are of current practice. The method is applicable to any type of boundary elements as well as tc, a wider class of static and dynamic axisymmetric boundary value problems. |
en |
heal.publisher |
MCB UNIV PRESS LTD |
en |
heal.journalName |
Engineering Computations (Swansea, Wales) |
en |
dc.identifier.doi |
10.1108/02644409810219802 |
en |
dc.identifier.isi |
ISI:000074817500002 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
428 |
en |
dc.identifier.epage |
449 |
en |