HEAL DSpace

A boundary element method for axisymmetric potential problems with non-axisymmetric boundary conditions using fast fourier transform

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Provatidis, Ch en
dc.date.accessioned 2014-03-01T01:13:30Z
dc.date.available 2014-03-01T01:13:30Z
dc.date.issued 1998 en
dc.identifier.issn 0264-4401 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12523
dc.subject axisymmetric problems en
dc.subject boundary element method en
dc.subject Fast Fourier transform en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Fast Fourier transforms en
dc.subject.other Problem solving en
dc.subject.other Boundary element method en
dc.subject.other Elasticity en
dc.subject.other Error correction en
dc.subject.other Green's function en
dc.subject.other Harmonic analysis en
dc.subject.other Integral equations en
dc.subject.other Theorem proving en
dc.subject.other Axisymmetric potential problems en
dc.subject.other Non axisymmetric boundary conditions en
dc.subject.other Axisymmetric methods en
dc.subject.other Dynamic engineering en
dc.subject.other Non-symmetric boundary conditions en
dc.subject.other Trapezoidal rule en
dc.subject.other Boundary element method en
dc.subject.other Problem solving en
dc.title A boundary element method for axisymmetric potential problems with non-axisymmetric boundary conditions using fast fourier transform en
heal.type journalArticle en
heal.identifier.primary 10.1108/02644409810219802 en
heal.identifier.secondary http://dx.doi.org/10.1108/02644409810219802 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract This paper presents a methodology, based on the fast Fourier transform (FFT), that improves prior established techniques to solve axisymmetric potential problems with nonaxisymmetric boundary conditions using the boundary element method (BEM). The proposed methodology is highly effective, especially in cases where a large number of harmonics is required. Furthermore, it is optimised at several levels, reaching the maximum possible efficiency. Special concern is given on its implementation on quadratic elements that are of current practice. The method is applicable to any type of boundary elements as well as tc, a wider class of static and dynamic axisymmetric boundary value problems. en
heal.publisher MCB UNIV PRESS LTD en
heal.journalName Engineering Computations (Swansea, Wales) en
dc.identifier.doi 10.1108/02644409810219802 en
dc.identifier.isi ISI:000074817500002 en
dc.identifier.volume 15 en
dc.identifier.issue 4 en
dc.identifier.spage 428 en
dc.identifier.epage 449 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής