dc.contributor.author |
Mavrotas, G |
en |
dc.contributor.author |
Diakoulaki, D |
en |
dc.date.accessioned |
2014-03-01T01:13:30Z |
|
dc.date.available |
2014-03-01T01:13:30Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0377-2217 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12524 |
|
dc.subject |
Branch and bound |
en |
dc.subject |
Integer programming |
en |
dc.subject |
Multiple criteria programming |
en |
dc.subject.classification |
Management |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Decision making |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integer programming |
en |
dc.subject.other |
Linear programming |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Random number generation |
en |
dc.subject.other |
Branch and bound algorithms |
en |
dc.subject.other |
Mixed zero one multiple objective linear programming |
en |
dc.subject.other |
Multiple criteria decision making (MCDM) problems |
en |
dc.subject.other |
Decision theory |
en |
dc.title |
A branch and bound algorithm for mixed zero-one multiple objective linear programming |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-2217(97)00077-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-2217(97)00077-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper, a branch and bound algorithm for the generation of the efficient set in mixed zero-one multiple objective linear programming problems is presented. The algorithm is developed as to take account of the multiple objectives in the node fathoming procedure. In order to extend the algorithm's applicability to large sized problems from real life, an interactive procedure is introduced which systematically reduces the number of efficient points and thus saves considerable computational effort without losing essential information. The algorithm is tested in randomly generated problems along with a case study concerning the power generation sector. (C) 1998 Elsevier Science B.V. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
European Journal of Operational Research |
en |
dc.identifier.doi |
10.1016/S0377-2217(97)00077-5 |
en |
dc.identifier.isi |
ISI:000074031900002 |
en |
dc.identifier.volume |
107 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
530 |
en |
dc.identifier.epage |
541 |
en |