HEAL DSpace

A power differentiation method of fractal dimension estimation for 2-D signals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Asvestas, P en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:13:32Z
dc.date.available 2014-03-01T01:13:32Z
dc.date.issued 1998 en
dc.identifier.issn 1047-3203 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12548
dc.subject Fractal Dimension en
dc.subject Human Perception en
dc.subject Surface Roughness en
dc.subject Texture Analysis en
dc.subject Power Spectrum Density en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Brownian movement en
dc.subject.other Fractals en
dc.subject.other Image quality en
dc.subject.other Mathematical models en
dc.subject.other Optical correlation en
dc.subject.other Spectrum analysis en
dc.subject.other Fractal dimension estimation en
dc.subject.other Modified power differentiation methods (MPDM) en
dc.subject.other Image analysis en
dc.title A power differentiation method of fractal dimension estimation for 2-D signals en
heal.type journalArticle en
heal.identifier.primary 10.1006/jvci.1998.0394 en
heal.identifier.secondary http://dx.doi.org/10.1006/jvci.1998.0394 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract Fractal dimension has been used for texture analysis as it is highly correlated with the human perception of surface roughness. Several methods have been proposed for the estimation of the fractal dimension of an image. One of the most popular is via its power spectrum density, provided that it is modeled as a fractional Brownian function, In this paper, a new method, called the power differentiation method (PDM), for estimating the fractal dimension of a two-variable signal from its power spectrum density is presented. The method is first applied to noise-free data of known fractal dimension. It is also tested with noise-corrupted and quantized data. Particularly, in the case of noise-corrupted data, the modified power differentiation method (MPDM) is developed, resulting in more accurate estimation of the fractal dimension. The results obtained by the PDM and the MPDM are compared directly to those obtained using four other well-known methods of fractal dimension. Finally, preliminary results for the classification of ultrasonic liver images, obtained by applying the new method, are presented. (C) 1998 Academic Press. en
heal.publisher ACADEMIC PRESS INC en
heal.journalName Journal of Visual Communication and Image Representation en
dc.identifier.doi 10.1006/jvci.1998.0394 en
dc.identifier.isi ISI:000077998000011 en
dc.identifier.volume 9 en
dc.identifier.issue 4 en
dc.identifier.spage 392 en
dc.identifier.epage 400 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής