HEAL DSpace

Acoustic Eigen frequencies in concentric spheroidal-spherical cavities: Calculation by shape per turbation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Roumeliotis, JA en
dc.date.accessioned 2014-03-01T01:13:33Z
dc.date.available 2014-03-01T01:13:33Z
dc.date.issued 1998 en
dc.identifier.issn 0022-460X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12559
dc.subject Neumann Boundary Condition en
dc.subject Perturbation Method en
dc.subject.classification Acoustics en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.title Acoustic Eigen frequencies in concentric spheroidal-spherical cavities: Calculation by shape per turbation en
heal.type journalArticle en
heal.identifier.primary 10.1006/jsvi.1997.1445 en
heal.identifier.secondary http://dx.doi.org/10.1006/jsvi.1997.1445 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The acoustic eigenfrequencies f(nsm) in concentric spheroidal-spherical cavities are determined analytically, for both Dirichlet and Neumann boundary conditions, by a shape perturbation method. Two types of cavities are examined, one with spheroidal outer and spherical inner boundary and inversely for the other. The analytical determination is possible in the case of small h = d/(2R(2)), (h<<1), where d is the interfocal distance of the spheroidal boundary and 2R(2) the length of its rotation axis. In this case exact, closed form expressions are obtained for the expansion coefficients g(nsm)((2)) and g(nsm)((4)) in the resulting relation f(nsm) (h) = f(ns) (0) [1 + h(2)g(nsm)((2)) + h(4)g(nsm)((4)) + O(h(6))]. Analogous expressions are obtained with the use of the parameter v = 1 -(R-2/R-2')(2), (\v\ << 1) where 2R(2)' is the length of the other axis of the spheroidal boundary. There is no need for using any spheroidal wave functions and the expansion formulas connecting them with the concentric spherical ones. The pressure field is expressed in terms of spherical wave functions, while the equation of the spheroidal boundary is given in terms of the spherical co-ordinates. Numerical results are given for various values of the parameters. (C) 1998 Academic Press Limited. en
heal.publisher ACADEMIC PRESS LTD en
heal.journalName Journal of Sound and Vibration en
dc.identifier.doi 10.1006/jsvi.1997.1445 en
dc.identifier.isi ISI:000073690200010 en
dc.identifier.volume 212 en
dc.identifier.issue 2 en
dc.identifier.spage 337 en
dc.identifier.epage 355 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής