dc.contributor.author |
Papadrakakis, M |
en |
dc.contributor.author |
Lagaros, ND |
en |
dc.contributor.author |
Thierauf, G |
en |
dc.contributor.author |
Cai, J |
en |
dc.date.accessioned |
2014-03-01T01:13:33Z |
|
dc.date.available |
2014-03-01T01:13:33Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0264-4401 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12562 |
|
dc.subject |
evolution strategies |
en |
dc.subject |
hybrid techniques |
en |
dc.subject |
structural optimization |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Simulated annealing |
en |
dc.subject.other |
Structural optimization |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Mathematical techniques |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Evolution strategies |
en |
dc.subject.other |
Evolution-based systems |
en |
dc.subject.other |
Natural processes |
en |
dc.subject.other |
Selection process |
en |
dc.subject.other |
Hybrid techniques |
en |
dc.subject.other |
Strategic planning |
en |
dc.subject.other |
Structural design |
en |
dc.title |
Advanced solution methods in structural optimization based on evolution strategies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1108/02644409810200668 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1108/02644409810200668 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The objective of this paper is to investigate the efficiency of hybrid solution methods when incorporated into large-scale optimization problems solved by evolution strategies (ESs) and to demonstrate their influence on the overall performance of these optimization algorithms. ESs imitate biological evolution and combine the concept of artificial survival of the fittest with evolutionary operators to form a robust search mechanism. In this paper modified multi-membered evolution strategies with discrete variables are adopted. Two solution methods are implemented based on the preconditioned conjugate gradient (PCG) algorithm. The first method is a PCG algorithm with a preconditioner resulted from a complete Cholesky factorization, and the second is a PCG algorithm in which a truncated Neumann series expansion is used as a preconditioner. The numerical tests presented demonstrate the computational advantages of the proposed methods, which become more pronounced in large-scale optimization problems and in a parallel computing environment. |
en |
heal.publisher |
MCB UNIV PRESS LTD |
en |
heal.journalName |
Engineering Computations (Swansea, Wales) |
en |
dc.identifier.doi |
10.1108/02644409810200668 |
en |
dc.identifier.isi |
ISI:000072522700002 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
12 |
en |
dc.identifier.epage |
34 |
en |