dc.contributor.author |
Cardinali, T |
en |
dc.contributor.author |
Fiacca, A |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:13:34Z |
|
dc.date.available |
2014-03-01T01:13:34Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12571 |
|
dc.subject |
Distributed Parameter System |
en |
dc.subject |
Existence Theorem |
en |
dc.subject |
Global Solution |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SUBDIFFERENTIAL OPERATORS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
PERTURBATIONS |
en |
dc.title |
An Existence Theorem for Evolution Inclusions Involving Opposite Monotonicities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jmaa.1996.5283 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jmaa.1996.5283 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper we examine evolution inclusions of the subdifferential type with the set-valued perturbation being nonconvex valued and dissipative. Under certain generally mild hypotheses on the data, we prove the existence of a strong global solution, extending earlier analogous results by M. Otani and A. Cellina-V. Staicu. An example of a distributed parameter system is also presented in detail. (C) 1998 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1006/jmaa.1996.5283 |
en |
dc.identifier.isi |
ISI:000073909400001 |
en |
dc.identifier.volume |
222 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
14 |
en |