HEAL DSpace

An unstructured grid partitioning method based on genetic algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giotis, AP en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:13:34Z
dc.date.available 2014-03-01T01:13:34Z
dc.date.issued 1998 en
dc.identifier.issn 0965-9978 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12577
dc.subject Cost Effectiveness en
dc.subject Cost Function en
dc.subject Distributed Memory en
dc.subject Genetic Algorithm en
dc.subject Genetic Operator en
dc.subject Graph Connectivity en
dc.subject Load Balance en
dc.subject Unstructured Grid en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Convergence of numerical methods en
dc.subject.other Distributed computer systems en
dc.subject.other Graph theory en
dc.subject.other Parallel processing systems en
dc.subject.other Recursive functions en
dc.subject.other Lanczos algorithm en
dc.subject.other Recursive spectral bisection en
dc.subject.other Unstructured grid partitioning method en
dc.subject.other Genetic algorithms en
dc.title An unstructured grid partitioning method based on genetic algorithms en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0965-9978(98)00014-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0965-9978(98)00014-3 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract A cost-effective method for the recursive bisection of two-dimensional unstructured grids into 2(n) subdomains is introduced. The method is based on Genetic Algorithms (GAs) and is capable of generating evenly loaded disjoint mesh subsets with small interface length, that can be efficiently processed in parallel, on distributed memory platforms. Non-dimensional quotients, that express the load-balance and minimum communication requirements, are combined in a simple cost function controlled by the GA. The genetic operators are coupled with a single-pass multilevel scheme that allows for reduced size chromosomes to be processed. Upon convergence at any level, the GA continues to operate at the next finer grid using the same population of the uncoarsened current chromosomes. At the lowest level, a special refinement task, that permits local modifications only to the available partitions, is carried out. Crossover operators are standard, while a customised mutation operator, that takes into account the graph connectivity, is proposed. After completion of the mutation, a correction task enhances the convergence properties of the proposed method. (C) 1998 Published by Elsevier Science Limited. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Engineering Software en
dc.identifier.doi 10.1016/S0965-9978(98)00014-3 en
dc.identifier.isi ISI:000074944800006 en
dc.identifier.volume 29 en
dc.identifier.issue 2 en
dc.identifier.spage 129 en
dc.identifier.epage 138 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής