HEAL DSpace

Anti-plane shear Lamb's problem treated by gradient elasticity with surface energy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, HG en
dc.contributor.author Vardoulakis, I en
dc.date.accessioned 2014-03-01T01:13:35Z
dc.date.available 2014-03-01T01:13:35Z
dc.date.issued 1998 en
dc.identifier.issn 0165-2125 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12584
dc.subject Boundary Condition en
dc.subject Boundary Integral Equation Method en
dc.subject Classical Solution en
dc.subject Contact Problem en
dc.subject Helmholtz Equation en
dc.subject Linear Elasticity en
dc.subject Surface Energy en
dc.subject Higher Order en
dc.subject Strain Energy Density en
dc.subject.classification Acoustics en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.other CRACK en
dc.subject.other TIP en
dc.title Anti-plane shear Lamb's problem treated by gradient elasticity with surface energy en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0165-2125(98)00015-8 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0165-2125(98)00015-8 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The consideration of higher-order gradient effects in a classical elastodynamic problem is explored in this paper. The problem is the anti-plane shear analogue of the well-known Lamb's problem. It involves the time-harmonic loading of a half-space by a single concentrated anti-plane shear line force applied on the half-space surface. The classical solution of this problem based on standard linear elasticity was first given by J.D. Achenbach and predicts a logarithmically unbounded displacement at the point of application of the load. The latter formulation involves a Helmholtz equation for the out-of-plane displacement subjected to a traction boundary condition. Here, the generalized continuum theory of gradient elasticity with surface energy leads to a fourth-order PDE under traction and double-traction boundary conditions. This theory assumes a form of the strain-energy density containing, in addition to the standard linear-elasticity terms, strain-gradient and surface-energy terms. The present solution: in some contrast with the classical one, predicts bounded displacements everywhere. This may have important implications for more general contact problems and the Boundary-Integral-Equation Method. (C) 1998 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Wave Motion en
dc.identifier.doi 10.1016/S0165-2125(98)00015-8 en
dc.identifier.isi ISI:000076295800004 en
dc.identifier.volume 28 en
dc.identifier.issue 4 en
dc.identifier.spage 353 en
dc.identifier.epage 366 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής