dc.contributor.author |
Georgiadis, HG |
en |
dc.contributor.author |
Vardoulakis, I |
en |
dc.date.accessioned |
2014-03-01T01:13:35Z |
|
dc.date.available |
2014-03-01T01:13:35Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0165-2125 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12584 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Boundary Integral Equation Method |
en |
dc.subject |
Classical Solution |
en |
dc.subject |
Contact Problem |
en |
dc.subject |
Helmholtz Equation |
en |
dc.subject |
Linear Elasticity |
en |
dc.subject |
Surface Energy |
en |
dc.subject |
Higher Order |
en |
dc.subject |
Strain Energy Density |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
CRACK |
en |
dc.subject.other |
TIP |
en |
dc.title |
Anti-plane shear Lamb's problem treated by gradient elasticity with surface energy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0165-2125(98)00015-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0165-2125(98)00015-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The consideration of higher-order gradient effects in a classical elastodynamic problem is explored in this paper. The problem is the anti-plane shear analogue of the well-known Lamb's problem. It involves the time-harmonic loading of a half-space by a single concentrated anti-plane shear line force applied on the half-space surface. The classical solution of this problem based on standard linear elasticity was first given by J.D. Achenbach and predicts a logarithmically unbounded displacement at the point of application of the load. The latter formulation involves a Helmholtz equation for the out-of-plane displacement subjected to a traction boundary condition. Here, the generalized continuum theory of gradient elasticity with surface energy leads to a fourth-order PDE under traction and double-traction boundary conditions. This theory assumes a form of the strain-energy density containing, in addition to the standard linear-elasticity terms, strain-gradient and surface-energy terms. The present solution: in some contrast with the classical one, predicts bounded displacements everywhere. This may have important implications for more general contact problems and the Boundary-Integral-Equation Method. (C) 1998 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Wave Motion |
en |
dc.identifier.doi |
10.1016/S0165-2125(98)00015-8 |
en |
dc.identifier.isi |
ISI:000076295800004 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
353 |
en |
dc.identifier.epage |
366 |
en |