dc.contributor.author |
Baltas, D |
en |
dc.contributor.author |
Giannouli, S |
en |
dc.contributor.author |
Garbi, A |
en |
dc.contributor.author |
Diakonos, F |
en |
dc.contributor.author |
Geramani, K |
en |
dc.contributor.author |
Ioannidis, GT |
en |
dc.contributor.author |
Tsalpatouros, A |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.contributor.author |
Kolotas, C |
en |
dc.contributor.author |
Zamboglou, N |
en |
dc.date.accessioned |
2014-03-01T01:13:35Z |
|
dc.date.available |
2014-03-01T01:13:35Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0031-9155 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12591 |
|
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
iridium 192 |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
article |
en |
dc.subject.other |
dosimetry |
en |
dc.subject.other |
mathematical analysis |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
radiation dose |
en |
dc.subject.other |
radioisotope therapy |
en |
dc.subject.other |
system analysis |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Biophysics |
en |
dc.subject.other |
Brachytherapy |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Iridium Radioisotopes |
en |
dc.subject.other |
Models, Theoretical |
en |
dc.subject.other |
Monte Carlo Method |
en |
dc.subject.other |
Neoplasms |
en |
dc.subject.other |
Quality Control |
en |
dc.subject.other |
Radiotherapy Dosage |
en |
dc.subject.other |
Radiotherapy Planning, Computer-Assisted |
en |
dc.subject.other |
Technology, Radiologic |
en |
dc.title |
Application of the Monte Carlo integration (MCI) method for calculation of the anisotropy of 192Ir brachytherapy sources |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0031-9155/43/6/029 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0031-9155/43/6/029 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Source anisotropy is a very important factor in the brachytherapy quality assurance of high-dose rate (HDR) Ir-192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalization) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir-192 is used for brachytherapy afterloading. Our MCI calculation results are compared with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir-192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir-192 sources, one for the microSelectron-HDR and two for the microSelectron-PDR, for which data are currently not available. The information we have obtained in this study can be incorporated into clinical practice. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Physics in Medicine and Biology |
en |
dc.identifier.doi |
10.1088/0031-9155/43/6/029 |
en |
dc.identifier.isi |
ISI:000074257600029 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1783 |
en |
dc.identifier.epage |
1801 |
en |