HEAL DSpace

Autonomous vehicle navigation using evolutionary reinforcement learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stafylopatis, A en
dc.contributor.author Blekas, K en
dc.date.accessioned 2014-03-01T01:13:36Z
dc.date.available 2014-03-01T01:13:36Z
dc.date.issued 1998 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12600
dc.subject Autonomous navigation en
dc.subject Genetic algorithms en
dc.subject Learning classifier systems en
dc.subject Reinforcement learning en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other ALGORITHMS en
dc.title Autonomous vehicle navigation using evolutionary reinforcement learning en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0377-2217(97)00372-X en
heal.identifier.secondary http://dx.doi.org/10.1016/S0377-2217(97)00372-X en
heal.language English en
heal.publicationDate 1998 en
heal.abstract Reinforcement learning schemes perform direct on-line search in control space. This makes them appropriate for modifying control rules to obtain improvements in the performance of a system. The effectiveness of a reinforcement learning strategy is studied here through the training of a learning classifier system (LCS) that controls the movement of an autonomous vehicle in simulated paths including left and right turns. The LCS comprises a set of condition-action rules (classifiers) that compete to control the system and evolve by means of a genetic algorithm (GA). Evolution and operation of classifiers depend upon an appropriate credit assignment mechanism based on reinforcement learning. Different design options and the role of various parameters have been investigated experimentally. The performance of vehicle movement under the proposed evolutionary approach is superior compared with that of other (neural) approaches based on reinforcement learning that have been applied previously to the same benchmark problem. (C) 1998 Elsevier Science B.V. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/S0377-2217(97)00372-X en
dc.identifier.isi ISI:000074232900006 en
dc.identifier.volume 108 en
dc.identifier.issue 2 en
dc.identifier.spage 306 en
dc.identifier.epage 318 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής