dc.contributor.author |
Theotokoglou, EE |
en |
dc.contributor.author |
Tsamasphyros, G |
en |
dc.date.accessioned |
2014-03-01T01:13:39Z |
|
dc.date.available |
2014-03-01T01:13:39Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0955-7997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12640 |
|
dc.subject |
Boundary integral equation |
en |
dc.subject |
Elasticity |
en |
dc.subject |
Exact expression |
en |
dc.subject |
Finite-part integral |
en |
dc.subject |
Singular integral |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Mechanics |
en |
dc.subject.other |
Solids |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Boundary integral method |
en |
dc.subject.other |
Finite part integral |
en |
dc.subject.other |
Singular integral |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
Derivation of exact expressions for two-dimensional singular and finite-part integrals applicable in solid mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0955-7997(98)00045-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0955-7997(98)00045-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The purpose of this paper is to develop exact expressions for the evaluation of singular and finite-part integrals appearing in the stress analysis of elastic solids. A numerical solution is presented for the solution of problems in three dimensional elastostatics. The kernels of the integral equation solution are given in the case where the surfaces of the solid are discretized with flat triangular elements. Exact expressions are derived for the singular and finite-part integrals over a triangular domain. The availability of exact expressions for these integrals will increase the accuracy of the numerical results without the need of any cubature formulae. Finally, the example considered in the paper indicates the excellent approximation obtained by the method even when using only a few classical elements. (C) 1998 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Engineering Analysis with Boundary Elements |
en |
dc.identifier.doi |
10.1016/S0955-7997(98)00045-9 |
en |
dc.identifier.isi |
ISI:000076025800005 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
125 |
en |
dc.identifier.epage |
132 |
en |