dc.contributor.author |
Pantelis, DI |
en |
dc.contributor.author |
Vonatsos, KN |
en |
dc.date.accessioned |
2014-03-01T01:13:40Z |
|
dc.date.available |
2014-03-01T01:13:40Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0947-8396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12651 |
|
dc.subject |
Experimental Validation |
en |
dc.subject |
Thermal Model |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Heat flux |
en |
dc.subject.other |
Laser beam effects |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Melting |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Steel |
en |
dc.subject.other |
Surface treatment |
en |
dc.subject.other |
Thermal conductivity |
en |
dc.subject.other |
Thermal diffusion |
en |
dc.subject.other |
Fourier differential equation |
en |
dc.subject.other |
Laser melted zone |
en |
dc.subject.other |
Taylor series approximation |
en |
dc.subject.other |
Heat affected zone |
en |
dc.title |
Development and experimental validation of analytical thermal models for the evaluation of the depth of laser-treated zones |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s003390050800 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s003390050800 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In order to estimate the depth of the heat-affected zone (HAZ) and the laser-melted zone (LMZ), during laser surface treatment, the Fourier differential equation is usually used, which is quite difficult to solve analytically for particular boundary and initial conditions. A new methodology is being proposed which leads to new formulas, estimating the heat-affected zone in the case where no melting occurs, and allows even complicated laser energy distribution profiles to be used. Specifically, Duhamel's principle is used leading to a convolution, which is integrated analytically by using a Taylor series approximation. Also, a new analytical thermal model has been developed, for the case where melting occurs, by using a moving-front approach. For both cases the calculated values of heat-affected zone and laser-melted zone are in good agreement with the experimental values. © Springer-Verlag 1998. |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
Applied Physics A: Materials Science and Processing |
en |
dc.identifier.doi |
10.1007/s003390050800 |
en |
dc.identifier.isi |
ISI:000076721900012 |
en |
dc.identifier.volume |
67 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
435 |
en |
dc.identifier.epage |
439 |
en |