dc.contributor.author |
Tsirikos, AS |
en |
dc.contributor.author |
Paraskevopoulos, PN |
en |
dc.date.accessioned |
2014-03-01T01:13:42Z |
|
dc.date.available |
2014-03-01T01:13:42Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0016-0032 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12666 |
|
dc.subject |
Disturbance rejection |
en |
dc.subject |
Linearization |
en |
dc.subject |
Model matching |
en |
dc.subject |
Nonlinear control systems |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Control system synthesis |
en |
dc.subject.other |
Feedback control |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Disturbance rejection |
en |
dc.subject.other |
Linear exact model matching |
en |
dc.subject.other |
Nonlinear control systems |
en |
dc.title |
Disturbance rejection with simultaneous linear exact model matching for a class of nonlinear systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0016-0032(97)00074-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0016-0032(97)00074-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper, the combined design problem of disturbance I ejection and of linear exact model matching via static state or static state and measurement feedback is considered. A nerv approach is presented which solves the problem for a class of affine nonsquare nonlinear systems. The proposed approach reduces the problem of determining the feedback control law, with or. without disturbance measurements, to that of solving a system of first-order partial differential equations. Based on this system of equations, algebraic (i.e. easily checkable) necessary and sufficient conditions for the design problem to have a solution are established Furthermore, solving this system of equations, the general analytical expression for the feedback control law is explicitly determined (C) 1998 The Franklin Institute. Published by Elsevier Science Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of the Franklin Institute |
en |
dc.identifier.doi |
10.1016/S0016-0032(97)00074-4 |
en |
dc.identifier.isi |
ISI:000075492400012 |
en |
dc.identifier.volume |
335 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1299 |
en |
dc.identifier.epage |
1325 |
en |