HEAL DSpace

Dynamical gauge symmetry breaking and superconductivity in three-dimensional systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farakos, K en
dc.contributor.author Mavromatos, NE en
dc.date.accessioned 2014-03-01T01:13:42Z
dc.date.available 2014-03-01T01:13:42Z
dc.date.issued 1998 en
dc.identifier.issn 0217-7323 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12669
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0000820022&partnerID=40&md5=597e99cc58a0731559b16ef82d9a046c en
dc.subject.classification Physics, Nuclear en
dc.subject.classification Physics, Particles & Fields en
dc.subject.classification Physics, Mathematical en
dc.subject.other 2-DIMENSIONAL SUPERCONDUCTIVITY en
dc.subject.other QUANTUM ANTIFERROMAGNET en
dc.subject.other LATTICE en
dc.subject.other FERMIONS en
dc.subject.other MODEL en
dc.subject.other PARITY en
dc.subject.other BOSONIZATION en
dc.subject.other VIOLATION en
dc.subject.other FLAVORS en
dc.subject.other HOLES en
dc.title Dynamical gauge symmetry breaking and superconductivity in three-dimensional systems en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1998 en
heal.abstract We discuss dynamical breaking of non-Abelian gauge groups in three-dimensional (lattice) gauge systems via the formation of fermion condensates. A physically relevant example, motivated by condensed matter physics, is that of a fermionic gauge theory with group SU(2) x U-S(1) x U-E(1). In the strong U-S(1) region, the SU(2) symmetry breaks down to a U(1), due to the formation of a parity-invariant fermion condensate. We conjecture a phase diagram for the theory involving a critical line, which separates the regions of broken SU(2) symmetry from those where the symmetry is restored. In the broken phase, the effective Abelian gauge theory is closely related to an earlier model of two-dimensional parity-invariant superconductivity in doped antiferromagnets. The superconductivity in the model occurs in the Kosterlitz-Thouless mode, since strong phase fluctuations prevent the existence of a local order parameter. Some physical consequences of the SU(2) x U-S(1) phase diagram for the (doping-dependent) parameter space of this condensed matter model are briefly discussed. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName Modern Physics Letters A en
dc.identifier.isi ISI:000073980000003 en
dc.identifier.volume 13 en
dc.identifier.issue 13 en
dc.identifier.spage 1019 en
dc.identifier.epage 1033 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής