HEAL DSpace

Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkorakis, GC en
dc.contributor.author Roumeliotis, JA en
dc.date.accessioned 2014-03-01T01:13:43Z
dc.date.available 2014-03-01T01:13:43Z
dc.date.issued 1998 en
dc.identifier.issn 0920-5071 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12682
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0001024562&partnerID=40&md5=80bd0711bdfe4a7923bcf9dae66b764b en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Physics, Applied en
dc.subject.classification Physics, Mathematical en
dc.title Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors) en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The electromagnetic eigenfrequencies f(nsm) in a perfectly conducting spheroidal cavity are determined analytically. The analytical determination is possible in the case of small values of h = d/(2a), (h much less than 1), where d is the interfocal distance of the spheroidal cavity and 2a the length of its rotation axis. In this case exact, closed-form expressions are obtained for the expansion coefficients g(nsm)((2)) and g(nsm)((4)) in the resulting relation f(nsm)(h) = f(ns)(0) [1 + h(2) g(nsm)((2)) +h(4) g(nsm)((4)) + O(h(6))]. Analogous expressions are obtained with the use of the parameter v = 1 - a(2)/b(2) (for \v\ much less than 1), where 2b is the length of the other axis of the spheroidal cavity. The electromagnetic field is expressed in terms of spheroidal eigenvectors. Numerical results are given for the lower-order modes. en
heal.publisher VSP BV en
heal.journalName Journal of Electromagnetic Waves and Applications en
dc.identifier.isi ISI:000077828700008 en
dc.identifier.volume 12 en
dc.identifier.issue 12 en
dc.identifier.spage 1601 en
dc.identifier.epage 1624 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής