dc.contributor.author |
Tsitouras, Ch |
en |
dc.contributor.author |
Simos, TE |
en |
dc.date.accessioned |
2014-03-01T01:13:45Z |
|
dc.date.available |
2014-03-01T01:13:45Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12702 |
|
dc.subject |
Explicit methods |
en |
dc.subject |
High-order method |
en |
dc.subject |
Interval of periodicity |
en |
dc.subject |
Orbital problems |
en |
dc.subject |
Oscillating solutions |
en |
dc.subject |
Phase-lag |
en |
dc.subject |
Second order differential equations |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
MINIMAL PHASE-LAG |
en |
dc.subject.other |
SCHRODINGER-EQUATION |
en |
dc.subject.other |
FORMULAS |
en |
dc.title |
Explicit high order methods for the numerical integration of periodic initial-value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0096-3003(97)10086-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0096-3003(97)10086-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Two explicit two-step hybrid methods of order 7 and 8 for the numerical integration of second order periodic initial-value problems are developed in this paper. The first of them has a large interval of periodicity and the other a minimal phase-lag. Each of them has seven stages per iteration. Numerical and theoretical results obtained for several well-known problems show the efficiency of the new methods. (C) 1998 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/S0096-3003(97)10086-8 |
en |
dc.identifier.isi |
ISI:000074533200002 |
en |
dc.identifier.volume |
95 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
15 |
en |
dc.identifier.epage |
26 |
en |