HEAL DSpace

Genetic algorithms in optimal detailed design of reinforced concrete members

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koumousis, VK en
dc.contributor.author Arsenis, SJ en
dc.date.accessioned 2014-03-01T01:13:46Z
dc.date.available 2014-03-01T01:13:46Z
dc.date.issued 1998 en
dc.identifier.issn 10939687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12716
dc.subject Genetic Algorithm en
dc.subject Reinforced Concrete en
dc.subject.other Optimization en
dc.subject.other Reinforced concrete en
dc.subject.other Structural design en
dc.subject.other Tall buildings en
dc.subject.other Multistory buildings en
dc.subject.other Reinforcing bars en
dc.subject.other Genetic algorithms en
dc.title Genetic algorithms in optimal detailed design of reinforced concrete members en
heal.type journalArticle en
heal.identifier.primary 10.1111/0885-9507.00084 en
heal.identifier.secondary http://dx.doi.org/10.1111/0885-9507.00084 en
heal.publicationDate 1998 en
heal.abstract Genetic algorithms emulate biologic evolutionary concepts to solve search and optimization problems. In this work, they are employed to perform the optimal detailed design of reinforced concrete members of multistory buildings. The objective is to convert the required reinforcement in square centimeters, given at a number of cross sections, into a set of reinforcing bars of specific diameter and length located at specific places along the member taking into account different criteria and rules of design practice. The anchorage lengths are taken into account, and the bars are cut at appropriate locations. For such problems, enumeration methods lead to expensive solutions, whereas genetic algorithms tend to provide near-optimal solutions in reasonable computing time. The genetic algorithms used in this work are based on a roulette wheel reproduction scheme; single, multiple-point, and uniform crossover; and constant or variable mutation schemes. A constant or variable elitist strategy is also used that passes the best designs of a generation to the next generation. The method decides the detailed design on the basis of a multicriterion objective that represents a compromise between a minimum weight design, a maximum uniformity, and the minimum number of bars for a group of members. By varying the weighting factors, designs with different characteristics result. Various parameters of the genetic algorithm are considered, and the corresponding results are presented. en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/0885-9507.00084 en
dc.identifier.volume 13 en
dc.identifier.issue 1 en
dc.identifier.spage 43 en
dc.identifier.epage 52 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής