dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:13:47Z |
|
dc.date.available |
2014-03-01T01:13:47Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0022-0396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12719 |
|
dc.subject |
Bifurcation theory |
en |
dc.subject |
Fredholm (noncompact) operators |
en |
dc.subject |
nonlinear elliptic equation |
en |
dc.subject |
unbounded domains |
en |
dc.subject |
indefinite weights |
en |
dc.subject |
weighted sobolev spaces |
en |
dc.subject |
spectral theory |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
INDEFINITE WEIGHT FUNCTION |
en |
dc.subject.other |
PRINCIPAL EIGENVALUES |
en |
dc.title |
Global Bifurcation Results for Semilinear Elliptic Equations on R N: The Fredholm Case |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jdeq.1997.3346 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jdeq.1997.3346 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
We prove the existence of a continuum of positive solutions for the semilinear elliptic equation -Delta u(x) = lambda g(x) f(u(x)), 0<u<1 for x epsilon R-N, lim(/x/-->+infinity)u(x)=0, which arises in population genetics, under the hypotheses that N greater than or equal to 3 and the weight g changes sign, being negative and away from zero at ca. After establishing the existence of a simple positive principal eigenvalue E., for the corresponding linearized problem, we prove the existence of a continuum of solutions lying in the space R x H-2 extended from lambda(1) to infinity. To complete this task we state a new version of the global bifurcation theory for nonlinear Fredholm (noncompact) operators and prove the compactness of the solution set of the problem. (C) 1998 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
Journal of Differential Equations |
en |
dc.identifier.doi |
10.1006/jdeq.1997.3346 |
en |
dc.identifier.isi |
ISI:000071872900005 |
en |
dc.identifier.volume |
142 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
97 |
en |
dc.identifier.epage |
122 |
en |