dc.contributor.author |
Dalianis, P |
en |
dc.contributor.author |
Kitsios, Y |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.date.accessioned |
2014-03-01T01:13:47Z |
|
dc.date.available |
2014-03-01T01:13:47Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
1079-8587 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12720 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0006766869&partnerID=40&md5=7f9bde5f77ff340ce8b57957809a30b2 |
en |
dc.subject |
Fuzzy controlled neural network |
en |
dc.subject |
Graph coloring |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Neurofuzzy k-coloring algorithms |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
OPTIMIZATION |
en |
dc.subject.other |
STABILITY |
en |
dc.title |
Graph coloring using fuzzy controlled neural networks |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Graph coloring is an important example of a class of combinatorial optimization problems, which are characterized by their large number of interacting degrees of freedom. Neural Networks (NN) and especially a variation of the Hopfield one constitutes a very popular approach to the solution of problems in this class. The algorithm presented here is based on the idea of improving the convergence performance of such a NN, with the use of a simple fuzzy controller. The algorithm is explained and applied to two graphs of different size. The simulation results are presented and described in detail. |
en |
heal.publisher |
AUTOSOFT PRESS |
en |
heal.journalName |
Intelligent Automation and Soft Computing |
en |
dc.identifier.isi |
ISI:000077286000001 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
273 |
en |
dc.identifier.epage |
288 |
en |